COSIA CHALLENGE

Mobilizing the world's minds and resources to improve environmental performance.

Direct Hot Water Production for an Oil Sands Mining & Extraction Process

SOLUTION DESCRIPTION:

Replace conventional hot water production approaches, which use economizers or low grade steam, in either new or existing mining operations.

CREATED: October 1st, 2015

All projects are evaluated and actioned as they are received.

CHALLENGE SPONSOR:

COSIA's **GHG EPA** is sponsoring this challenge.

Our aspiration is to produce our oil with lower greenhouse gas emissions than other sources of oil.

COSIA has four Environmental Priority Areas (EPAs): Water, Land, Tailings, and Greenhouse Gases (GHGs).

For more information on this COSIA Challenge please visit www.cosia.ca

Canada's Oil Sands Innovation Alliance (COSIA) accelerates the pace of environmental performance improvement in Canada's oil sands through collaborative action and innovation. COSIA Members represent more than 90 per cent of oil sands production. We bring together innovators and leading thinkers from industry, government, academia and the wider public to identify and advance new transformative technologies. Challenges are one way we articulate an actionable innovation need, bringing global innovation capacity to bear on global environmental challenges.

COSIA CHALLENGE

Mobilizing the world's minds and resources to improve environmental performance.

WHAT TO SUBMIT TO COSIA

COSIA requires sufficient non-confidential, nonproprietary information to properly evaluate the technology.

Some items that will be especially important to present in your submission are:

- Concept and basic unit operations
- Technical justification for the approach (e.g. laboratory batch or continuous experiments; pilot or demo plants; process modeling; literature precedent)
- Describe quantities and qualities of utilities and consumables that are required
- Energy inputs quantity and type(s)
- Capital and operating cost estimates if available based on described capacity targets
- 3rd party verified comparison of your proposed technology against an MEA baseline. 3rd party verifiers should be reputable, independent engineering companies if possible
- Basis of cost estimation, including estimation scope, contingency, etc.
- IP status of your proposed technology
- What operating environment restrictions might your technology face:
 - Explosive atmospheres
 - Severe weather
 - Power fluctuations

FUNDING, FINANCIALS, AND INTELLECTUAL PROPERTY

COSIA Members are committed to identifying emerging technologies and funding the development of the technologies to the point of commercialization, while protecting the Intellectual Property (IP) rights of the owner of the technology.

Successful proposals can receive funding from COSIA members to develop and demonstrate the technology in an oil sands application. Multiple technologies may be funded, at the discretion of the Members.

HOW TO SUBMIT TO COSIA

Submit a summary of your solution using COSIA's Environmental Technology Assessment Portal (E-TAP) Process, available at:

http://www.cosia.ca/initiatives/etap/ideasubmission-form

Please note: ETAP is a staged submission process.

The initial submission requires only a brief description and limited technical information. Upon review by COSIA, additional information may be requested. Instructions for submission are provided on the

ETAP site.

All information provided is non-confidential. COSIA will respond to all submissions.

nexen

COSIA CHALLENGE

#0013: Direct Hot Water Production for an Oil Sands Mining & Extraction Process

DETAILED SOLUTION DESCRIPTION

The COSIA Greenhouse Gas Environmental Priority Area has identified Direct Hot Water Production as a technology which could improve the environmental performance of mineable oil sands. New technology is sought which could replace conventional hot water production approaches, which use economizers or low grade steam, in either new or existing mining operations.

The successful technology will:

- Directly produce commercial scale (5,000 10,000 m3/hr) of 40-90 °C hot water without using existing (or new) steam resources for heat exchange purposes;
- Target approximately a 25% reduction (for a single solution, or cumulatively through multiple solutions) in energy requirements, or CO2 emissions, for hot water production; and
- Be amenable to retrofitting of existing operations.

Technologies at all stages of technical maturity are of interest.

BACKGROUND

Oil sands mining and extraction processes require large amounts of hot water in two separate streams: In the 40-60 °C range and the 70-90°C range. Currently this hot water is produced indirectly through contact with steam produced in natural gas fired boilers. Hot water volumes will differ between operations, but generally would be in the range of 5,000 – 10,000 m3/hr in total. Current operations use 900 -1,300 GJ/hr of energy to produce hot water in naphthenic-based froth treatment operations; and 1,000-1,900 GJ/hr for paraffinic froth treatment dependent on season and ore grade.

Heat integration and efficient use of recycle water can significantly improve overall energy efficiency of hot water generation. While use of non-conventional energy sources (like deep geothermal) or novel concepts for hot water generation has been studied, no clear technology options have emerged.

APPROACHES NOT OF INTEREST

The following approaches are currently considered to be lower priority:

- Solar hot water generation (limited days of sunshine, given northern latitudes); and
- Deep geothermal heating.

ADDITIONAL INFORMATION

The following link provides information on COSIA's Mine Reference Facility, which includes energy and material flow diagrams for a reference oil sands mine:

http://www.cosia.ca/uploads/documents/id39/Tetra%20Tech%20Development%20of%20a%20Static%20Oil%20San ds%20Mine%20Ref.pdf

This is a generic and hypothetical mine and extraction facility developed by COSIA. While representative, it is not based on any one facility. Recovery and solvent loss is based on Alberta Energy Regulator requirements.

V	
•	

Bitumen

Water

Steam Fuel gas

Solvent

BFW

CWR

GT

НΗΛ

breviations

Boiler Feed Water

Cooling Water Return

Gas Turbine Generator

Output (GJ/h

BFW Preheating 633

Electricity

Steam

Steam

Cogen Losses

Boiler Losses

457

797

333

2,220

687

64

%

%

vol.%

vol.%

vol.%

vol.%

°C

40 MJ/m3

2,660 e3m3/h

380 e3m3/h

Duty (GJ/h)

1,108

301

1,051

199

357

179

13

4%

7%

9% 17%

121

274

751 2,971

Froth Settling Unit

High Heating Value

Cooling Water

HRSG	Heat Recovery Steam Generator			
LPS	Low Pressure Steam			
MPS	Medium Pressure Steam			
PSC	Primary Separ	Primary Separation Cell		
PW	Process Water	r		
SRU	Solvent Recov	ery Unit		
TSRU	Tailing Solven	t Recovery Unit		
Energy Outp	ut Summary	Input (GJ/h)		
Cogen	GTG	1,547		
	HRSG	672		
Subtotal - Co	ogen	2,220		
Boilers		751		
Subtotal - Bo	oilers	751		
Total		2,971		
Flue Gas - Ba	ised on Stochiome	tric Combustion		
Natural Gas I	HHV			
Excess air @	13% O2			
Excess O2				
Cogen Flue G	ias			
CO2 in Flue C	Gas from Cogen			
H2O in Flue (Gas from Cogen			
Boiler Flue G	as			
CO2 in Flue C	Gas from Boilers			
H2O in Flue (Gas from Boilers			
Flue Gas Ten	nperature - Acid De	w Point Limit		
Flue Gas - Ma	ax. without Econon	nizer		
Exchanger &	Cooler			
Process Wate	er / Cooling Water			
Process Wate	er / Condensate			
Process Wate	er / LPS			
SRU Feed / N	/IPS			

Energy Consumptio	n Summary	GJ/h	e3m3/d
	GTG	1,547	928
Natural Cas	HRSG	672	403
Natural Gas	Building Heating and Flare	604	363
	Boilers	751	451
Diesel		515	0.3
Energy Intensity (GJ per bbl of bitumen produced)		0.49	GJ/bbl
Electricity Generated		3,044	MWH/d
Electricity Consume	3,142	MWH/d	

GHG Emiss	ions Summary			
Stationary	4,:	137	t CO2e/d	
Mobile Equ	uipment	8	92	t CO2e/d
Fugitive M	ine	0.0001 - 0	.0150	kg CO2e/m2/d
Fugitive Pc	ond	0.0007 - 0	.0201	kg CO2e/m2/d
Total Coge	n Emissons (Gt)	2,	569	t CO2e/d
Deemed er	missions from Heat by Cogen (D _H)	2,0	069	t CO2e/d
Deemed er	Deemed emissions from Electricity by Cogen			t CO2e/d
Project:	Static Oil Sands Mine and Extract	on Referen	ce Faci	lity
Case:	Paranffic - High Grade	Revision:	V 2.3.9	9
Owner:	COSIA			
Date:	04-Oct-15			
Energy / H High Temp	Energy / Heat Flow High Temperature Extraction, High Grade, Summer Condition			

This is a generic and hypothetical mine and extraction facility developed by COSIA. While representative, it is not based on any one facility. Recovery and solvent loss is based on Alberta Energy Regulator requirements.

Bitumen		
Water		
Steam		
Fuel gas		
Solvent		
Tailing		
_		
Abbreviatio	ons	
BFW	Boiler Feed Water	
FSU	Froth Settling Unit	
GTG	Gas Turbine Generator	
HHV	Higher Heating Value	
HRSG	Heat Recovery Steam Generator	
LPS	Low Pressure Steam	
MPS	Medium Pressure Steam	
PSC	Primary Separation Cell	
SG	Specific Gravity	
SRU	Solvent Recovery Unit	
TDS	Total Dissolved Solids	
TOC	Total organic carbon	
TSRU	Tailing Solvent Recovery Unit	
Bitumen Re	ecovery Summary	
Ore Prepara	ation	99.0%
Primary Ext	traction	94.6%
Froth Treat	ment (without rejected asphaltenes)	98.4%
Total Bitum	en Recovery	92.2%
Asphaltene	s Rejection	7.6%
Total Bitum	en Recovery (with rejected asphaltenes)	85.1%
Water Sum	mary (T/H)	
Process Wa	ater Cooling Water	6,217
1100000 1.	Heated Water	10,314
Reclaimed	Water	14,051
Raw Water		2,480
BFW		241
Boiler Blow	down	21
Make-Up W	later	2,721
Condensate	e Return	479
P		
Project:	A Static Oil Sands Mine and Extraction Reference Facility	
Case:	Paraffinic - High Grade Revision: V 2.7.7	
Owner:	COSIA	
Date:	04-Oct-15	
Material Flo	W	
High Temp	erature Extraction, High Grade, Summer Condition	

egend

This is a generic and hypothetical mine and extraction facility developed by COSIA. While representative, it is not based on any one facility. Recovery and solvent loss is based on Alberta Energy Regulator requirements.

Legend Bitumon						
Water						
Steam						
Fuel gas						
Diluent						
Tailing						
Abbroviati						
RFW/	Boiler Feed Water					
CW	Cooling Water					
CWR	Cooling Water Return					
GTG	Gas Turbine Generatio	r				
HHV	High Heating Value					
HRSG	Heat Recovery Steam (Generator				
LPS MDS	Low Pressure Steam	m				
NRU	Naphtha Recovery Uni	t				
PSC	Primary Separation Ce	<u>.</u> 				
PW	Process Water					
Energy Out	put Summary	Input (G	l/h)	0	utput (GJ/h)	~
Cogen	GTG	1,547		Electricity	457	/ 6
	пкзы	0/2		Steam	1 0/	1 <u>4</u>
				Cogen Losse	es 333	3
Subtotal -	Cogen	2,220)		2,22	20
Boilers		291		Steam	266	6
				Boiler Losse	s 25	\$
Subtotal - I	Boilers	291			293	1
Total		2,511			2,51	11
Flue Gas						
Natural Ga	s HHV			40) MJ/r	m3
Excess air (@ 13% O2 in Cogen			179)% %	
Excess O2				139	% %	
Cogen Flue	Gas			2,66	60 e3m3	3/h
CO2 in Flue	Gas from Cogen			4%	<u>6 vol.</u>	<u>%</u>
H2O in Flue	e Gas from Cogen			7%	6 VOI.	% 2/h
CO2 in Flue	Gas from Boilers			14 9%		<u>5711</u> %
H2O in Flue	e Gas from Boilers			179	% vol.	%
Flue Gas Te	emperature - Acid Dew	Point Limit		12	1 °C	
Flue Gas - N	Max. without Economize	er		27	4 °C	
Exchanger	tor / Cooling Water				Duty (GJ/ł	ר) ר
Process Wa	ater / Cooling Water				255	
Process Wa	ater / LPS				921	
Diluent Fee	ed / MPS				199	
Energy Cor	sumption Summary			GJ/	<mark>h e3m</mark> 3	3/d
	GTG			1,54	<u>47 928</u>	8
Natural Ga	S HKSG Building He	ating and F	laro	67.	$\frac{2}{6}$ $\frac{40}{22}$	3
	Boilers		lare	29	$\frac{0}{1}$ 17!	5
Diesel				47	8 0.3	3
Energy Inte	ensity (GJ / bbl bitumen	produced)		0.4	0 GJ/b	bl
Electricity (Generated			3,04	44 MWF	H/d
Electricity (Consumed			3,60	00 MWH	-l/d
Stationary	Combustion & Elaring			3 3 2 9	t CO2e/r	4
Mobile Equ	ipment			827	t CO2e/c	<u></u>
Fugitive Mi	ne		0.00	01 - 0.0150	kg CO2e/m	2/d
Fugitive Po	nd		0.01	19 - 0.8054	kg CO2e/m	2/d
Total Coge	n Emissons (Gt)	·		2,569	t CO2e/c	t l
Deemed er	nissions from Heat by C	.ogen (D _H) <u>7 by Cogen (</u>		2,069	t CO2e/c	ג ד
2 cenica el		, ~, cogen (- E1	500		
Project:	Static Reference Oil S	ands Mine a	and Fx	traction Refe	erence Facili	it∨
Case:	Naphthenic - High Grad	de	Revis	sion: V 1.6		-1
Owner:	COSIA		•			
Date:	04-Oct-15					
Energy / He	eat Flow		_			
High Temp	erature Extraction, High	n Grade, Ave	erage (Condition		

This is a generic and hypothetical mine and extraction facility developed by COSIA. While representative, it is not based on any one facility. Recovery and solvent loss is based on Alberta Energy Regulator requirements.

Water		
Steam		
Fuel Gas		
Diluent		
Tailing		
Abbreviati	ons	
BFW	Boiler Feed Water	
GTG	Gas Turbine Generatior	
HHV	High Heating Value	
HRSG	Heat Recovery Steam Generator	
LPS	Low Pressure Steam	
MPS	Medium Pressure Steam	
NRU	Naphtha Recovery Unit	
PSC	Primary Separation Cell	
Bitumen R	ecovery Summary	
Ore Prepar	ation	98.9%
Primary Ex	traction	98.0%
Froth Treat	ment (without rejected asphaltenes)	98.2%
Total Bitumen Recovery		95.2%
Asphaltenes Rejection		0.0%
Total Bitumen Recovery (with rejected asphaltenes)		95.2%
Water Sum	nmary (T/H)	
	Cooling Water	5,599
Process w	ater Heated Water	8,579
Reclaimed	Water	12,051
Raw Water		2,127
BFW		202
Boiler Blow	down	20
Make-Up W	/ater	2,328
Condensat	e Return	470
Project:	Static Oil Sands Mine and Extraction Reference Facility	
, Case:	Naphthenic - High Grade Revision: V 1.3	
Owner:	COSIA	
Date:	27-Sep-15	
Material Flo	• · · · · · · · · · · · · · · · · · · ·	
High Temp	erature Extraction. High Grade. Average Condition	
5 1	, <u>, , , , , , , , , , , , , , , , , , </u>	

gend

Bitumen

