An Exploration of Conservation Breeding and Translocation Tools to Improve the Conservation Status of Boreal Caribou Populations in Western Canada

Calgary Zoo Centre for Conservation Research
May 2016
An Exploration of Translocation Tools for Boreal Caribou Conservation

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>3</td>
</tr>
<tr>
<td>PREFACE</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>WORKSHOP PROCESS</td>
<td>12</td>
</tr>
<tr>
<td>Success Statements</td>
<td>12</td>
</tr>
<tr>
<td>Structured Decision Making</td>
<td>12</td>
</tr>
<tr>
<td>1. CONSERVATION NEEDS STATEMENT</td>
<td>14</td>
</tr>
<tr>
<td>2. OBJECTIVES</td>
<td>16</td>
</tr>
<tr>
<td>3. THREATS</td>
<td>19</td>
</tr>
<tr>
<td>4. ALTERNATIVE STRATEGIES</td>
<td>21</td>
</tr>
<tr>
<td>4.1 Management Tools</td>
<td>21</td>
</tr>
<tr>
<td>4.1.1 Maternal Penning</td>
<td>21</td>
</tr>
<tr>
<td>4.1.2 Captive Breeding and Release</td>
<td>22</td>
</tr>
<tr>
<td>4.1.3 Wild-to-wild Translocation</td>
<td>22</td>
</tr>
<tr>
<td>4.1.4 Predator Exclosure Fencing</td>
<td>23</td>
</tr>
<tr>
<td>4.2 Building Alternative Strategies</td>
<td>24</td>
</tr>
<tr>
<td>5. CONSEQUENCES</td>
<td>28</td>
</tr>
<tr>
<td>5.1 Initial Vote for Strategies</td>
<td>28</td>
</tr>
<tr>
<td>5.2 Consequence Table</td>
<td>30</td>
</tr>
<tr>
<td>6. TRADE-OFFS</td>
<td>33</td>
</tr>
<tr>
<td>6.1 Weighting Objectives</td>
<td>34</td>
</tr>
<tr>
<td>6.2 Normalizing the Consequence Table</td>
<td>36</td>
</tr>
<tr>
<td>6.3 Weighted Normalized Consequence Table</td>
<td>37</td>
</tr>
<tr>
<td>6.4 Sensitivity to Stakeholder Values</td>
<td>38</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>39</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
<tr>
<td>ANNEXES</td>
<td>41</td>
</tr>
<tr>
<td>Annex 1. Detailed strategies developed by individual working groups</td>
<td>41</td>
</tr>
<tr>
<td>Annex 2. Success Statements</td>
<td>45</td>
</tr>
<tr>
<td>Annex 3. Workshop Agenda</td>
<td>47</td>
</tr>
<tr>
<td>Annex 4. Participant List and Contact Information</td>
<td>48</td>
</tr>
<tr>
<td>Annex 5. Key Points from Plenary Discussions</td>
<td>50</td>
</tr>
<tr>
<td>Annex 6. Pre-workshop Document</td>
<td>50</td>
</tr>
</tbody>
</table>
FOREWORD

When I think of Canada, some of the first images that flash through my mind are of caribou—of large herds walking through vast, undisturbed tracts of Arctic tundra or of a single female staring out from dense boreal forest, her newborn calf by her side, both seemingly frozen in time. It is the desire to preserve opportunities for future generations to experience these breath-taking and inspiring moments of raw Canadian nature that drives my passion and brings me into work each day.

For over a decade I have had the privilege of leading the Calgary Zoo as we strive to achieve our vision of becoming Canada’s leader in wildlife conservation. Over this time, our Conservation Research team has diligently used science to conserve and recover Canadian species at risk, including the swift fox, whooping crane and Vancouver Island marmot. For each species, we have been met with a unique context of biological, social, political, economic, spiritual and cultural factors. However, perhaps no other species has involved a conservation situation quite as complex and connected to human life as caribou.

For a species so uniquely tied to Canadian life, I strongly believe that its conservation will only be successful by building strong, mutually respectful and lasting relationships between all stakeholders involved. It is with this in mind that the Calgary Zoo welcomed the opportunity to bring those concerned about caribou together in a three-day workshop to discuss what population-based measures can be implemented to help conserve boreal caribou in Western Canada.

Over the course of the workshop, multiple and sometimes vastly different perspectives were communicated on the conservation situation for boreal caribou in Western Canada, objectives for their recovery and potential solutions. But what was shared by all was an overarching goal to ensure the persistence of boreal caribou in the region and a stark dedication to do so. Participants worked side by side to build upon their collective knowledge to outline objectives and develop alternative population management strategies for boreal caribou in Western Canada. These strategies and other findings detailed within this report highlight potential options that can be extended to caribou throughout the country. The knowledge imparted, outcomes established, and relationships formed at the workshop will play an invaluable role in caribou recovery in Canada.

I have no doubt that by working closely together, building upon strong science and respectfully considering all aspects of caribou conservation, we can save this iconic Canadian species for many future generations to experience and enjoy.

Sincerely,

Dr. Clément Lanthier
President and CEO
Calgary Zoo
PREFACE

As joint hosts for the workshop on “Conservation Breeding and Translocation Tools to Improve the Conservation Status of Boreal Caribou Populations in Western Canada”, it is a pleasure to present this report, which culminated from a year of background preparation, three days of stakeholder interaction and four months of post-workshop analysis and interpretation.

During site visits in Alberta and British Columbia, we saw caribou, wolf tracks, development impacts, habitat restoration efforts and relatively pristine habitats. We met with leading academics, managers, government representatives, industry experts, and witnessed First Nations involvement. These experiences, meshed with a comprehensive scientific review, led us to appreciate not only the biological complexities surrounding boreal caribou conservation, but also a broad array of sensitivities that accompany diverse interests in caribou and the landscapes they occupy.

The limits of our focus at the workshop were clearly defined—the understood and necessary solution of longer-term habitat restoration was not to be under consideration. Rather, intensive management of caribou was the issue. We were clearly mandated to explore whether a spectrum of conservation translocation techniques could accompany existing caribou conservation strategies, particularly in a context where some habitat management efforts in isolation might not be able to reverse the declines evident in many caribou populations.

The International Union for the Conservation of Nature (IUCN) is the world’s oldest and largest global environmental organization, with almost 1,300 government and NGO members, and more than 15,000 volunteer experts in 185 countries. The IUCN aims to help the world find pragmatic solutions to our most pressing environment and development challenges. We engage the caribou issue on behalf of IUCN Groups we chair, as conservation action is most effective within the context of sound species conservation planning, and conservation translocations, such as reintroductions, must be conducted within the framework of international IUCN guidelines that we have helped develop.

In the broader conservation context, translocation planning surrounding caribou is particularly interesting and challenging because the pursuit of not one – but 10 – objectives was seen as important by various stakeholders, and numerous strategies could be considered. The IUCN Species Conservation Planning Subcommittee was able to assist in this problem-solving opportunity, but recommended the situation was ideally suited to a structured decision-making approach, which has been increasingly employed by the IUCN Reintroduction Specialist Group in various countries.

This report merits careful reading. The course of the three-day workshop followed a logical sequence of steps, building on the large volume of high-grade research over many years and the accumulated wisdom of participants. A preferred outcome was clearly identified through iterative exploration of agreed strategies and opinions on their effectiveness. Strategies that participants judged as best addressing respective objectives are presented, and a particular strategy was found to best accommodate the greatest number of objectives. Further exploration is needed on the implications and nuances, and the viability of any strategy will be influenced by local conditions. We now encourage subsequent action planning and implementation to enable immediate benefits and a long-term trajectory that will see boreal caribou conserved in harmony with human interests.
Despite the large number of enthusiastic participants and the relatively short timeframe, a most successful conclusion was reached. We are delighted that this was achieved, and we wish all good fortune and success to those tasked with following up and making a difference to the persistence of boreal caribou in Western Canada.

Dr. Axel Moehrenschlager
Chair, IUCN SSC Re-introduction Specialist Group
Director of Conservation & Science, Calgary Zoological Society

Dr. Mark Stanley Price
Chair, IUCN SSC Species Conservation Planning Sub-Committee
Senior Research Fellow, Wildlife Conservation Research Unit, University of Oxford, UK
ACKNOWLEDGEMENTS

Many are to thank for a successful workshop, and the generation of outcomes that will contribute meaningfully to future discussions and decisions regarding caribou recovery. The workshop was organized by a Steering Committee comprised of:

- Axel Moehrensclager, Calgary Zoo
- Natasha Lloyd, Calgary Zoo
- Tatiana Hayek, Calgary Zoo
- Carla Paton, Calgary Zoo
- Mark Stanley Price, Oxford University
- Amit Saxena, Devon Canada Corporation
- Andrew Higgins, Canadian Natural Resources Limited

On behalf of the Steering Committee, we would first like to thank all of the workshop participants for their commitment, participation, and engagement during a very busy time.

We would also like to thank the many Calgary Zoo staff who diligently provided workshop participants with all the equipment and comforts necessary for a long, but productive, three days.

Lastly, but certainly not least, we would like to thank the donors whose support made this workshop possible. Funding for the workshop was graciously provided by The BC Oil and Gas Research and Innovation Society (BC OGRIS), Devon Canada Corporation, Cenovus Energy Inc., MEG Energy Corp., Canadian Natural Resources Limited, Imperial Oil Resources Limited, Husky Oil Operations Limited, Statoil Canada Ltd., Nexen Energy ULC, and Suncor Energy Inc.
EXECUTIVE SUMMARY

The boreal population of woodland caribou (hereafter, ‘boreal caribou’) is listed nationally as Threatened under Schedule 1 of the federal Species at Risk Act (SARA). The precarious status of local populations of boreal caribou is evident in Western Canada, where most populations are declining, some rapidly.

In the face of declining population trends, there is an urgent need to consider further interventionist approaches to assist population recovery until landscapes are returned to more suitable conditions for caribou through ongoing habitat restoration. In particular, population-based management tools can potentially play an important role in population recovery.

The purpose of this workshop was to evaluate the potential role of population-based management within the context of all recovery tools. More specifically, the workshop aimed to evaluate in which context population-based management tools should be applied and what suite of tools should be considered. To so do, 43 participants from a number of different stakeholder groups—academia (7), provincial (6), federal (4) and First Nations governments (2), industry (11), NGOs (3), zoos (7), and independent/consulting groups (3)—worked with two IUCN facilitators to follow a structured decision-making process. Structured decision-making is a collaborative approach that IUCN SSC Reintroduction Specialist Group experts have successfully applied to address conservation issues around the world.

The range of population-based management tools under consideration fell into four distinct categories:

1. **Maternal penning**: a captive-rearing technique that aims to increase calf survival by relocating pregnant female caribou to a small predator-proof pen within their herd’s native range for a relatively short period of time to give birth and raise their young.

2. **Captive breeding and release**: keeping and selectively breeding caribou in captivity, usually at an ex-situ facility, over a relatively long period of time with the purpose of releasing individuals back into the wild.

3. **Wild-to-wild translocation**: a conservation translocation wherein animals are moved from one wild population to another, or to another location within the population’s range.

4. **Predator exclosure fencing**: a technique that aims to create a secure spatial refuge from predation by constructing a permanent predator-proof fence around a large area of a target caribou population’s range, and releasing yearling caribou each year.

Over the course of three days, workshop participants followed a structured decision-making process to define objectives, outline alternative population-based management strategies, and compare these strategies based on their expected outcomes in regard to the objectives.

Workshop participants used the four categories of population-based management tools as a basis to build 10 alternative management strategies for small caribou populations:

1. **Fence 1**: 90 caribou would be held within a 30 km² predator exclosure fence within their native range. All predators would be removed from within the fence; outside the fence, wolves would be controlled if adult caribou mortality was high, and alternate prey would also be managed. Caribou would be released from the fence to the surrounding area.
2. **Fence 2**: The same as Fence 1, but a larger fenced area (100-500 km²) and fewer caribou (50 caribou); i.e., lower caribou density within the fence.

3. **Translocation**: A maximum of 5% of a large donor caribou population, or multiple medium-sized populations, would be translocated and released to suitable habitat at a destination site in late winter using soft-release techniques. Wolves would be controlled at the destination site.

4. **Captive Breeding 1**: Caribou would be captured from a large (>1,000 individuals) source population and bred at an ex-situ breeding facility. Once the captive population was large enough, a minimum of 10-20 caribou 9-10 months old would be released to the most suitable/beneficial destination (chosen based on decision rules) annually using soft-release techniques. Wolves would be controlled at the destination site.

5. **Captive Breeding 2**: The same as Captive Breeding 1, but without any predator control at the destination site.

6. **Captive Breeding 3**: The same as Captive Breeding 1 and 2, but with control of both wolves and other predators at the destination site.

7. **Predator Control**: Predators and alternate prey would be managed within an entire caribou range and an additional 20 km buffer area—annually, wolves would be reduced to a density of 2-3/1,000 km² by aerial removal, bears would be managed with hunting, trapping would be promoted to control smaller predators, and alternate prey would be hunted. This strategy would only target caribou populations for which there was sufficient suitable habitat to accommodate an expanded population.

8. **Maternal Penning 1**: Approximately 50% of females within a target caribou population would be held within a 10-50 hectare maternal pen and released with their calves when calves reached 10-12 weeks old. Years in which maternal penning took place would be pulsed and informed by population monitoring. Wolves would be controlled.

9. **Maternal Penning 2**: The same as Maternal Penning 1, but a larger maternal pen (150-200 hectares); i.e., lower caribou density within the pen.

10. **Fence 3**: Caribou would be held within a >500 km² predator exclosure fence and managed to a maximum sustainable yield. Within the fence, predators would be removed using non-lethal techniques and alternate prey would be culturally harvested. Caribou would be released from the fence to the surrounding caribou population and/or translocated to other caribou populations. At release sites where there was uncertainty around a positive/stable/negative lambda, maternal penning would be incorporated as a soft-release technique.

Participants decided upon a set of 10 fundamental objectives related to boreal caribou conservation; the large number of objectives reflected the complexity of issues that needed to be addressed in the workshop. Participants were asked to weight these objectives based upon their perceived importance. Weightings highlighted that the extent to which workshop participants, both individually and as a group, valued each objective varied.

Alternative strategies were compared in terms of their expected outcomes in regard to different objectives. The top strategy varied between objectives, and for several objectives there was more than one top strategy.
Each objective (sorted from most to least important based on average group scores) and the strategy(ies) that best addressed each objective are as follows:

1. Minimize caribou extinction probability — Fence 2
2. Maximize the welfare of all animals — Fence 3
3. Minimize the impact to biodiversity — Captive Breeding 2
4. Minimize the invasiveness of management — Fence 3
5. Maximize public acceptance of management — Fence 3
6. Minimize the cost of management — Predator Control
7. Maximize livelihood opportunities for First Nations — Fence 2
8/9*. Maximize public appreciation of caribou — Captive Breeding 2 and Fence 3
8/9*. Maximize spiritual and cultural connection to caribou — Fence 1 & 2, and Maternal Penning 2
10. Maximize access to [natural] resources — Captive Breeding 1, 2 & 3

(* Tied/equal objective weights)

Fence 3 was the strategy believed to best accommodate the set of objectives overall, followed closely by Fence 2. The top two strategies as identified in this process involved fences, indicating a group preference for this type of population-based management tool. Maternal Penning 2 fell closely behind the top two strategies, followed by Captive Breeding 2, Maternal Penning 1 and Fence 1 (tied), Captive Breeding 1, Captive Breeding 3, Translocation, and lastly, Predator Control.

At the workshop’s conclusion, participants reviewed and agreed by consensus to the following summary statement:

“At least one conservation translocation technique (fencing, wild-to-wild translocation, captive breeding, maternal penning), or combination thereof, will be worthwhile pursuing to reduce the likelihood of extinction of at least one boreal caribou herd in Western Canada.

Given that:

- Major threats have been identified and will be mitigated.
- Some of these techniques are ready for near term implementation, pending site-specific design, planning, and risk-benefit analysis.
- Beyond improving the persistence of at least one caribou herd, any of these options would also depend upon alignment with other values and rights that have been identified (e.g., access to resources, livelihood opportunities of First Nations).
- The implementation of any preferred options must fall within regulatory requirements, and have the approval of any statutory, responsible agencies.
- Any implementation would be based on science and principles of adaptive management.
- Cost-benefit analyses for techniques will inform potential supporters and/or investors.”
This workshop broadly defined potential strategies developed around each population-based management tool, and compared these strategies in terms of their expected outcomes in regard to specified objectives. Agencies may now determine what strategy(ies) would be most worthwhile to advance depending upon: 1) a specific subset of objectives they value most or, 2) the full set of objectives. Structured decision-making may assist in action implementation, as far greater detail would be necessary to fully develop and implement any strategy. Agencies interested in advancing any of these strategies should form the necessary partnerships and follow appropriate regulatory processes as soon as possible to address the urgent and complex situation of improving the conservation status of boreal caribou populations in Western Canada.
INTRODUCTION

The status of boreal caribou, the threats they face and the diverse solutions – both proposed and tested – to improve their status, have been the subject of much research, consultation and action over the last few decades. Ongoing and planned efforts at habitat restoration will ultimately support species recovery over the long-term. However, given that the overall trend in numbers remains downward, management tools must be implemented in the near-term to address the most proximal cause of decline and impediment to recovery – losses, primarily of calves, to predation.

Against this background, the goal of this workshop was not to develop conservation strategies for boreal caribou populations, but rather to assess more immediate and bridging conservation measures by evaluating the relative potential of intensive, population-based management tools to improve the status of boreal caribou in Western Canada. If implemented, such tools would be applied alongside other requisite habitat-based tools to together contribute to boreal caribou recovery through provincially led Action Plans.

The population-based management tools addressed during this workshop were:
- maternal penning,
- predator exclosure fencing,
- wild-to-wild translocations, and
- captive breeding and release.

The workshop was facilitated by Dr. Mark Stanley Price, Chair of the IUCN Species Survival Commission’s (SSC) Species Conservation Planning Sub-Committee, and Dr. John Ewen, Member of the IUCN SSC Reintroduction Specialist Group and a structured decision-making expert with the Zoological Society of London. Workshop participants included 43 representatives from industry, provincial, federal and First Nations governments, academia, NGOs, zoos and private consultants (see Annex 4 for full participant list).

Over the course of three days, participants followed a structured decision-making (SDM) process to outline the conservation situation for boreal caribou in Western Canada, to define the focus and scope of the workshop, to specify objectives, to brainstorm alternative strategies, and to compare how these strategies would be predicted to perform against specified objectives (see workshop agenda in Annex 3). Structured decision-making is a collaborative approach that IUCN SSC Reintroduction Specialist Group experts have successfully applied to address many conservation issues.
WORKSHOP PROCESS

Success Statements

Prior to beginning the SDM process, the workshop facilitators assessed what participants expected of the workshop and its outcomes. Participants were asked to succinctly write what would constitute a successful workshop for them. All responses, unedited, are listed in Annex 2.

Though responses varied, there were several common elements. Overall, participants hoped to:

1. Openly discuss and gain a better understanding of population-based management tools that could contribute to boreal caribou conservation;
2. Scope population-based management tools that could complement existing tools, including advantages/disadvantages of each tool and decision criteria to determine when a given tool should be applied;
3. Develop practical (versus solely theoretical) approaches that could be implemented;
4. Collaborate and ideally come to a consensus between stakeholders;
5. Reach a conclusion and have a clear path forward by the end of the workshop.

Structured Decision Making

Threats facing boreal caribou are numerous, synergistic and cumulative. In addition to impacts of ongoing conservation efforts and anticipated future challenges, this creates a situation of great complexity against which an array of population-based management options must be assessed. Given the deteriorating status of many boreal caribou populations, the workshop implicitly recognized that the situation required urgent actions.

The situation of complexity and urgency presented by caribou recovery lends itself to application of a structured decision-making (SDM) process (Figure 1), which is specifically designed to help solve multi-objective decisions with uncertainty through group deliberation. SDM is a common-sense approach to making

SDM Process: Explaining SDM

Structured decision making is the collaborative and facilitated application of decision-aid tools to help groups solve environmental management and public policy problems by balancing choices across multiple objectives (Gregory et al. 2012). It is based on an iterative process in which objectives are explicitly stated, clearly defined alternative management strategies are evaluated in terms of their expected outcomes, and trade-offs are solved, while explicitly accounting for uncertainty (Figure 1).

Translocation programs have long been identified as ideal candidates for the application of decision-analytic methods (Maguire 1986; Maguire et al. 1987). However, the actual implementation of decision analysis in threatened species conservation programs involving translocation has only begun to gain momentum in recent years (Smith et al. 2011; Moore et al. 2012; Converse et al. 2013; Runge 2013; Ewen et al. 2014).
decisions and can be applied readily to help organize and rationally approach a decision, even with limited
time. Therefore, the three-day workshop used a SDM process and this report is organized accordingly. In
each section of the report, outputs are preceded by a brief description of the step within the SDM process,
activities that took place at the workshop, and/or an explanation of how facilitators analyzed information.

Figure 1. Overview of the SDM process (modified from Runge et al. 2011).
1. CONSERVATION NEEDS STATEMENT

SDM Process Step 1: Conservation Needs Statement

This statement highlights the focus and scope of the decision problem, describes why it has arisen, and identifies the decision makers, timeframe and legal framework within which a decision must be made.

A Conservation Needs Statement should include seven core elements:

1. Trigger — Why does a decision need to be made? Why does it matter?
2. Action — What actions need to be taken?
3. Constraints — What are the constraints (legal, financial, political) on taking the stated action(s)? Are these perceived or real?
4. Class or type of problem — How many objectives are there? Do they conflict? What is the level of uncertainty?
5. Decision maker — Who will and has the power to make a decision?
6. Frequency and timing — What is the periodicity of a decision? Must there be other, related decisions?
7. Scope — How broad or complicated is the decision?

Using the above guidelines, a Conservation Needs Statement was developed in draft by workshop facilitators, and edited and subsequently adopted by all workshop participants. This statement was written and edited within the limited timeframe set by the workshop. Therefore, while concepts and intentions may have been refined or expressed differently by various stakeholders given additional time, we present the following statement verbatim, as agreed upon by participants during the workshop:

“Most boreal populations of woodland caribou (hereafter, ‘boreal caribou’) are declining and are currently listed nationally as “Threatened” under the Federal Species at Risk Act (SARA). The precarious status of local populations\(^1\) of boreal caribou is evident in Western Canada\(^2\), in particular in British Columbia and Alberta where most populations are declining. Habitat preservation and restoration is necessary and is being implemented locally in an attempt to reverse these declines, but not in all ranges and not at a large enough scale. Furthermore, the

1. Within the federal recovery strategy a ‘local population’ refers to a group of boreal caribou that occupy a range (‘the geographic area occupied by a group of individuals that are subject to similar factors affecting their demography and used to satisfy their life history processes (e.g., calving, rutting, wintering) over a defined time frame’; EC 2012, pg. iv).

2. Alberta (AB), British Columbia (BC), Northwest Territories (NWT), Saskatchewan (SK), Yukon (YT).
timeframe to realize habitat recovery is in the matter of decades (EC 2012), and the extent and
timing of habitat restoration has to be balanced in synergy with social, cultural and economic
interests from the same working landscape. Improvement of habitat is the ultimate goal, but it
is recognized that the suite of population management tools currently being employed is not
adequate.

In addition to protection and restoration of critical habitat and other measures, in the face of
decreasing population trends, there is an urgent need to also consider further interventionist
approaches to assist population recovery. In particular, population-based management tools
have the potential to play an important role in population recovery. Here, we will thoroughly
evaluate the potential role of population-based management within the context of all recovery
tools by answering two linked questions:

1. In what local population context or combination of populations should population-based
 management tools be used?

2. What suite of population-based management tools should be considered?

Our focus is on local populations with potential contribution to the broader landscape for boreal
caribou in Western Canada. It is recognized that these questions will need to be evaluated in
combination with ongoing habitat-based management tools and that our answers will need to
acknowledge uncertainty. Reference should be made to the Federal Recovery Strategy and
provincial and territorial obligations under the national accord.

Answers to these linked questions need to be made over three days in a workshop setting. They
will be informed by the highly detailed pre-workshop document (Hayek et al. 2016) and draw on
expert opinions from the wealth of Canadian research knowledge and global ungulate
experience represented by the workshop participants. The workshop brings together wildlife
professionals, academics, First Nations and other governments, industry and NGOs, as
stakeholders and rights holders, so that together their objectives shape how we answer these
questions. The short timeframe will allow only qualitative analysis and comparisons.

The outcomes from this workshop will be made available to those responsible for caribou
conservation so that well-supported tools can be incorporated into strategies for caribou
recovery as soon as possible.

Ultimately these recommendations need to be supported by the agencies responsible for
caribou conservation.”
2. OBJECTIVES

SDM Process Step 2: Objectives

The decision-analytic approach is value-based, focusing on the preferences and values of the decision makers and stakeholders to identify the optimal decision. Focusing on preferences does not negate the desire for objective, rational decisions; rather, it reinforces it since it recognizes that a strategy is simply a way of achieving a given objective – no ‘best’ strategy can thus be defined unless the objective is clear.

Workshop Activity

Workshop participants followed a systematic approach to develop objectives:

1. Workshop participants were asked individually to list their values (expressions of concerns or aspirations) associated with boreal caribou conservation (e.g., “boreal caribou will go extinct in the near future”) and objectives to address these concerns (e.g., “minimize the probability of extinction”).

2. Participants representing similar stakeholder groups then combined their individual responses into a set of objectives that captured their group’s core values, and further categorized these objectives as fundamental (i.e., those that reflect our core values or end-goals, and are useful for comparing and choosing between a range of possible management strategies; Table 1; Figure 2), means (i.e., those that are important in highlighting ways of achieving end-goals; Figure 2) or process (i.e., those that state how we want to approach our decision-making process; Figure 2).

3. Fundamental objectives outlined by stakeholder groups were then consolidated into 10 agreed-upon fundamental objectives that represented the core values of the entire workshop group (Table 1).

4. For each fundamental objective, one or more indicators of success were specified (Table 1; Figure 2). These indicators of success helped to further clarify the meaning of the objectives and provide a metric by which to compare potential conservation strategies.

A range of values was expressed across the group and these included different types of objectives. Although all objectives are important, they can contribute to decision-making in different ways (see Workshop Activity box for details). The participants agreed on a set of 10 fundamental objectives and associated indicator(s) of success (Table 1; Figure 2). In addition to these 10, there was a range of means and process objectives. The relationship between these objectives is captured in Figure 2, allowing participants to identify where their value is being considered. Ensuring that the group has carefully considered and identified their fundamental values is a difficult yet essential part of any decision-making process. Without doing so, no rational choice can be made.
There was also a reluctance to drop consideration of habitat concerns at this step despite habitat restoration being beyond our decision framing as expressed in the Conservation Needs Statement. These objectives are also expressed in Figure 2 to similarly allow participants to identify where their values are captured, but they were not considered further within the workshop.

Table 1: Fundamental Objectives and Indicators of Success

<table>
<thead>
<tr>
<th>Fundamental Objective</th>
<th>Indicator of Success</th>
<th>Desired Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Caribou extinction probability</td>
<td>Probability of extinction in 20 years</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Proportion of range occupied</td>
<td>maximize</td>
</tr>
<tr>
<td>2 Biodiversity impact</td>
<td>Difference from natural assemblage and abundance</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Similarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evenness</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Richness</td>
<td>minimize</td>
</tr>
<tr>
<td>3 Invasiveness of management</td>
<td>Rank score of invasiveness</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Frequency of invasiveness</td>
<td>minimize</td>
</tr>
<tr>
<td>4 Welfare of all animals</td>
<td>Number of 5 freedoms compromised</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Point on CCAC</td>
<td>minimize</td>
</tr>
<tr>
<td>5 Public appreciation of caribou</td>
<td>Number of positive news items</td>
<td>maximize</td>
</tr>
<tr>
<td>6 Public acceptance of management</td>
<td>Number of official complaints</td>
<td>minimize</td>
</tr>
<tr>
<td></td>
<td>Number of negative news items</td>
<td>minimize</td>
</tr>
<tr>
<td>7 Spiritual and cultural connection</td>
<td>Maintain or improve</td>
<td>maximize</td>
</tr>
<tr>
<td>8 Livelihood opportunities for First Nations</td>
<td>Annual allowable harvest</td>
<td>maximize</td>
</tr>
<tr>
<td></td>
<td>Number of meaningful jobs created</td>
<td>maximize</td>
</tr>
<tr>
<td></td>
<td>$ value / year of contracts</td>
<td>maximize</td>
</tr>
<tr>
<td>9 Cost of management</td>
<td>Total cost of management over 20 years ($)</td>
<td>minimize</td>
</tr>
<tr>
<td>10 Access to resources</td>
<td>% of existing tenured land available for development</td>
<td>maximize</td>
</tr>
<tr>
<td></td>
<td>Number of days of operating restrictions</td>
<td>minimize</td>
</tr>
</tbody>
</table>

1 Extinction probability of natural caribou populations
2 Biodiversity impact outside of fences (including predator exclosure fences)
3 Minimize the difference from the natural assemblage and abundance in terms of its similarity, evenness and richness.
4 Invasiveness to caribou, not including other wildlife species. Refers to invasiveness of the technique to all caribou, wild or captive/fenced. ‘Rank score of invasiveness’ refers to the relative invasiveness of a strategy as compared to other strategies (i.e., its ‘rank’ relative to others). ‘Frequency of invasiveness’ refers to how many invasive ‘steps’ would be required as part of the strategy (e.g., single capture event vs. multiple capture events, or capture and immediate release vs. capture and transport prior to release).
5 The facilitators interpreted animal welfare to encompass all animals, including wolves. However, there was some confusion amongst participants on this point when completing the consequence table.
6 The 5 freedoms of animals are freedom from (1) hunger and thirst, (2) discomfort, (3) pain, injury or disease, and (4) fear and distress, and the freedom to (5) express normal behaviour. CCAC = The Canadian Council on Animal Care in science. ‘Points on CCAC’ refers to the Categories of Invasiveness for Wildlife Studies: (A) Methods used on most invertebrates or on live isolates, (B) Methods used which cause little or no discomfort or stress, (C) Methods used which cause minor stress or pain of short duration, (D) Methods used which cause moderate to severe distress or discomfort, (E) Procedures which cause severe pain near, at, or above the pain tolerance of unanesthetized conscious animals (CCAC 2003).
7 $ value of employment created as a result of tools used within the strategy.
Figure 2: All objectives identified by workshop participants (categorized by type of objective) and indicators of success. The above outlines the process by which fundamental objectives were extracted and indicators of success were developed to address each fundamental objective.
3. THREATS

Threats to boreal caribou have been extensively identified, studied and reported in the literature. There is broad consensus that the primary proximate cause of decline of boreal caribou is increased and unsustainable levels of predation, and that this increased predation is a result of landscape-level habitat changes (yielding both numerical and functional responses in predators to the detriment of caribou). Despite the large volume of information, it was necessary to briefly gather participants’ own opinions regarding threats to boreal caribou prior to developing alternative strategies.

Table 2: Identified direct and indirect threats to specific age/sex classes of boreal caribou

<table>
<thead>
<tr>
<th>Caribou Age/Sex Class</th>
<th>Direct Threats</th>
<th>Indirect Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female age-specific pregnancy/birth rate</td>
<td>• Old age structure</td>
<td>Habitat alteration (e.g., resource development, linear features, early seral stage forests), which influences predator abundance, access and hunting efficiency, reduces caribou functional habitat, and increases human access.</td>
</tr>
<tr>
<td></td>
<td>• Maternal stress (due to climate, disturbance, nutrition)</td>
<td></td>
</tr>
<tr>
<td>Calf (< 2 months old) mortality</td>
<td>• Predation by wolves and bears</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Calving time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loss of calving grounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Poor mothering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vehicles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adverse weather</td>
<td></td>
</tr>
<tr>
<td>Juvenile (2-12 months old) mortality</td>
<td>• Predation by wolves and bears</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Summer malnutrition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mother survival and condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Disease</td>
<td></td>
</tr>
<tr>
<td>Adult female mortality</td>
<td>• Predation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Malnutrition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hunting/poaching</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vehicles</td>
<td></td>
</tr>
</tbody>
</table>
Echoing previous research (much of which has been recognized in recent relevant boreal caribou recovery frameworks; e.g., ASRD and ACA 2010, EC 2012), the group re-confirmed by consensus the notion of predation (primarily by wolves and secondarily by bears) as the main direct threat, and habitat alteration (which may in turn increase predation) as the main indirect threat to all caribou age classes, from calves to adults. Several other factors, including nutrition, disease, vehicle collisions and hunting/poaching, were also recognized as threats. Old age structure within the population was identified as the major direct threat to female age-specific pregnancy/birth rate, with predation by wolves and bears, and stress due to climate, disturbance, and poor nutrition, applying indirect pressures.

The participants also identified several other factors that influence the process of caribou recovery, including:

- Climate change
- Economics, including Canada’s resource-based economy
- Policy
- Legacy of past policy
- Public interest
- Constitutional rights for First Nations
- Technological constraints
- Logistical constraints
4. ALTERNATIVE STRATEGIES

Workshop Activity:

Key experts briefly introduced each population-based management tool; they discussed the outcomes and challenges experienced during previous projects, offered opinions and answered questions.

4.1 Management Tools

The range of possible management tools fell into four distinct categories. Discussions of each population management tool under consideration is summarized below. For more information on each of these techniques, see the summary document prepared for this workshop (Hayek et al. 2016) in Annex 6.

4.1.1 Maternal Penning

Maternal penning is a captive-rearing technique in which female caribou are relocated to a small predator-proof pen within their herd’s native range for a relatively short period of time to give birth and raise their young. This technique aims to increase calf survival by protecting calves over their first few weeks of life (when mortality is generally highest).

Troy Hegel (Government of Yukon), Scott McNay (Wildlife Infometrics), and Helen Schwantje (B.C. Government) provided high-level overviews of maternal penning projects with which they have been involved (Chisana, West Moberly and Revelstoke, respectively). These experts agreed that maternal penning may be a useful tool to recover small at-risk caribou populations that are declining due to poor calf survival. In addition, public acceptance for maternal penning is generally high compared to alternative techniques. However, maternal penning is invasive, logistically difficult, costly, only appropriate during a small window of time, and is associated with a number of risks to caribou being held captive. Some challenges experienced during penning have included aggression between individuals in the pen, heat stress, poor water quality, calf death and poor female body condition. To address challenges associated with maternal penning, a number of factors are required prior to and while implementing maternal penning, including:

- sound understanding of the mechanisms of population decline;
- good estimate of the population before initiating maternal penning;
- adequate funding and strong partnerships;
- well-trained staff and strict protocols; and
- concurrent predator control outside the pen area (likely required).

Ongoing monitoring of caribou, both captive-born and wild-born animals, is crucial and should inform management. Depending on monitoring outcomes, maternal penning may be chosen to be implemented over a short time period or using a pulsed method (e.g., three years on, one year off with re-evaluation of the situation).

Cost: Costs for maternal penning were approximately $1 million/year for the Chisana project and $500,000/year for the West Moberly project.
4.1.2 Captive Breeding and Release

For the purposes of this workshop, formal captive breeding programs were considered to be those in which caribou are kept in captivity and selectively bred over a relatively long period (years), usually at an ex-situ facility such as a zoo.

Axel Moehrenschlager (Calgary Zoo) and Jamie Dorgan (Calgary Zoo) spoke on captive breeding and answered questions concerning feasibility, logistics and expectations. Formal captive breeding of caribou for a conservation translocation has never been conducted, though caribou have been bred and raised in captivity for various reasons for centuries. In general, captive-bred animals often experience higher mortality than wild-bred animals upon release; however, one advantage of captive breeding is that it provides a sustainable source for translocations rather than drawing upon wild populations.

When considering a captive breeding program, the mechanism of population decline is an important consideration, as it will affect management of the captive population, such as frequency of releases and the number of founder animals. Captive breeding and release programs are generally more suitable for small wild populations, as releasing a limited number of individuals into a larger population may not provide the desired positive impact on overall population size or trend.

Many unknowns exist, but theoretically if enough founder females were available, an ex-situ facility with a capacity of at least 60 adult caribou (100 caribou total) could potentially produce 40 to 50 calves for release each year within 3 to 4 years of initiating a captive breeding program. Founder males would need to be switched in and out to maintain genetic diversity of the captive population. Males could potentially begin to be released into the wild before females. Models would need to be developed to determine an appropriate ratio of males:females in the captive population (i.e., genetic diversity required and the ability to capture additional founder animals), as well as potential impacts on the wild herd of releasing additional males. When considering a captive breeding and release program to reinforce the then-extant Banff mountain caribou population, it was estimated that 15 animals/year for three years (i.e., 45 animals total) would be required.

Cost: When exploring the feasibility of captive breeding caribou for the purpose of potentially reintroducing mountain caribou into Banff National Park, it was estimated that the breeding component (i.e., excluding research, communications and other associated costs) would cost approximately $10 million over a 10-year period. However, this estimate was derived for a specific scenario and should not be assumed to be an accurate representation of the potential cost for captive breeding boreal caribou under different situations.

4.1.3 Wild-to-wild Translocation

Wild-to-wild translocation is a conservation translocation wherein animals to be moved are sourced from a wild population (as opposed to captive breeding and release). There have only been a few caribou translocations attempted in Western Canada to date, each of which has had different outcomes, so there remains a great deal to learn about wild-to-wild translocations of caribou.

Chris Ritchie (B.C. Government) discussed the most recent wild-to-wild caribou translocation, in which caribou were released to the Purcells-South mountain caribou population in B.C. Due to adverse weather, the original plan to release the translocated animals close to resident herds was not possible and the caribou had to be released farther away, which may have impeded their ability to learn from the resident
caribou. Only two of the original 19 translocated caribou survived. A major challenge experienced was that translocated caribou wandered away from the release location and into sub-optimal habitat, which likely contributed to high caribou mortality from predation.

Overall, wild-to-wild translocation is a short-term tool best suited for small populations, and is only possible if a robust donor population is available (which is a problem in B.C. at this time). The donor population should ideally be of a similar ecotype as the target population, and translocated individuals should exhibit behaviour similar to individuals at the release site. One option to encourage suitable behaviours of translocated caribou may be to hold them with captured resident caribou in a pen at the release site for a short period of time and release all the caribou together (i.e., a soft release approach). In addition, predator management at the release site will be required. Predator management at the source site could also be considered as a way of increasing numbers in the source population to reduce any demographic impact caused by extracting individuals.

Cost: In scoping the feasibility of translocating 20 caribou/year for two years from northern B.C. or southern Yukon to Banff National Park, the translocation program (consultation, translocation and monitoring) was predicted to cost an estimated $128,000 in year one, $168,000 in year two and $61,000 in year three (additional telemetry monitoring) plus staff time; translocation costs themselves were estimated to total $107,000 plus staff time (Kinley 2009).

4.1.4 Predator Exclosure Fencing

Predator exclosure fencing is a technique in which a permanent predator-proof fence would be constructed around a large area of a target caribou population’s range to recreate a secure spatial refuge from predation (as natural spatial refuge has been lost due to human development). The caribou population, or portion thereof, would permanently reside within this area and be managed at an appropriate density and demography (including potential releases outside the fence). To date, a predator exclosure fence has never been built or used for this purpose.

Stan Boutin (University of Alberta) discussed the concept of a large-scale predator exclosure fence. This concept is currently being explored by multiple stakeholders in Alberta. Based on initial discussions, it is estimated that approximately 50 wild caribou cows would be captured and enclosed within a predator-free 100 km² fenced area, which would function as a pilot-scale project to test feasibility and effectiveness. The actual number of caribou enclosed would ultimately depend on habitat suitability and carrying capacity (especially forage) within the enclosure.

Females would give birth and raise calves to a certain age, after which time the calves would be released outside of the fence to reinforce the wild population. Adult females would never be released. Adult male caribou would be kept at a low number within the fence (for breeding purposes only). Logistics of animal release and management, as well as fence management, are still being explored.

The location of a fence would depend both upon the quality of habitat and logistics (permissible activities, costs, accessibility, maintenance, etc.). Predators would be removed inside of the fence, but removal outside of the fence may not be necessary if enough calves could be released. Other ungulates within the fence would be managed by harvesting.

Cost: The cost of constructing, maintaining and managing a 100km² predator exclosure fence is currently estimated at $18-20 million over 15 years (front-loaded over this timeframe due to construction costs).
4.2 Building Alternative Strategies

SDM Process Step 4: Alternative strategies

Once the fundamental objectives of population management are clearly established and threats have been identified, it is possible to define and evaluate potential management strategies that could achieve these objectives. Given the biological and non-biological complexity inherent in most population-based management tools (including fencing, maternal penning, wild-to-wild translocation, and captive breeding and release), strategies will involve combinations of actions and associated decisions, such as the size of fenced/captive areas, the composition of animals contained within these areas, the location and timing of releases, the method of release, etc.

Workshop Activity:

1. Brainstorming

Workshop participants assembled into five randomly selected working groups for the following:

i. Each working group spent 30 minutes considering a single management tool, using it as a basis to build a caribou conservation strategy; groups were instructed to describe the conditions/situations under which their selected management tool would be appropriate, and details of how the management tool would be implemented if conditions were met.

ii. Each group then did the same for a second management tool, and subsequently (if time permitted) for the third and fourth tools.

iii. Thus, after two hours, each of the five working groups had a potential strategy for each of the four tools, unless a group considered a tool entirely inappropriate, in which case no strategy was developed.

2. Identification of key factors for consideration

i. Based upon group discussions and details expressed during the brainstorming session, facilitators identified major components of strategies built around each management tool.

ii. Participants were then asked to revisit and expand upon their strategies to ensure all of these major components were addressed. Two working groups also developed ‘predator control’ strategies. See Annex 1 for major components of each strategy, and full details of strategies developed for each management tool by the five working groups.

3. Consolidation of results into a final set of alternative strategies

i. The facilitators summarized the individual strategies developed by each of the five working groups based on similarities and dissimilarities, resulting in nine final strategies. These were discussed and agreed to by all participants.

ii. A ‘no predator control’ strategy (Fence 3) was developed by a small breakout team to test an apparent dominant concern of all participants around the future social acceptability of predator control methods.

iii. This yielded a final set of 10 strategies (Table 3).
Based on experts’ discussions of the relevant tools and individual strategies developed by working groups (Annex 1), there was a general consensus that the majority of population-based management tools being considered were most appropriate for small\(^3\) (or occasionally medium), declining populations. Therefore, a total of 10 alternative management strategies were generated (Table 3) that focused upon small caribou populations.

These strategies contained only enough detail for participants to judge, at a broad scale, the relative performance of strategies to achieve the agreed fundamental objectives. This is an important distinction from a final detailed implementation plan that will necessarily require far greater detail on the form and integration of tools. In the below table, we include some explanatory footnotes associated with these strategies to help clarify how strategies could be implemented, though the level of detail remains very broad.

\(^{3}\) Small populations refer to those that number less than 50 caribou. Medium populations are those that number between 50 and 200 caribou. Large populations number more than 200 caribou.
Table 3: Set of candidate strategies for management of small caribou populations

<table>
<thead>
<tr>
<th>Strategy Name</th>
<th>Habitat Characteristics</th>
<th>Fence or Captive Facility Details</th>
<th>Caribou-related Details</th>
<th>Caribou Release Details</th>
<th>Predator/Alternate Prey Removal</th>
<th>Other Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fence 1 (small fenced area, high caribou density)</td>
<td>+ High quality habitat in native range</td>
<td>+ 30 km²</td>
<td>+ 90 caribou in fence + supplementary feeding + First Nations harvest of male yearlings³</td>
<td>+ Releasing from fence</td>
<td>+ Removal of all predators inside fence + Wolf control outside if high adult mortality + Alternate prey control</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>2 Fence 2 (large fenced area, low caribou density)</td>
<td>+ High quality habitat in native range</td>
<td>+ 100-500 km²</td>
<td>+ 50 caribou + supplementary feeding + First Nations harvest of male yearlings</td>
<td>+ Releasing from fence</td>
<td>+ Remove all predators inside fence + Wolf control outside if high adult mortality + Alternative prey control</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>3 Translocation</td>
<td>+ Suitable habitat at destination</td>
<td>n/a</td>
<td>+ Source caribou only from large or multiple medium populations⁴ + max translocate 5% of donor herd⁵</td>
<td>+ Soft release + Release late winter</td>
<td>+ Wolf control at destination</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>4 Captive Breeding 1 (wolf control at destination)</td>
<td>+ Most suitable/beneficial destination (decision rule)⁶</td>
<td>+ Ex-situ breeding facility⁷</td>
<td>+ From large source (>1,000 individuals)</td>
<td>+ Soft release + Annual release (9-10 month old and minimum 10-20 calves per release)⁹</td>
<td>+ Wolf management at destination⁹ + Pathogen and genetic management</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>5 Captive Breeding 2 (no predator control)</td>
<td>+ Most suitable/beneficial destination (decision rule)</td>
<td>+ Ex-situ breeding facility⁷</td>
<td>+ From large source (>1,000 individuals)</td>
<td>+ Soft release + Annual release (9-10 month old and minimum 10-20 calves per release)⁹</td>
<td>+ No wolf management at destination + Pathogen and genetic management</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>6 Captive Breeding 3 (wolf and other predator control)</td>
<td>+ Most suitable/beneficial destination (decision rule)</td>
<td>+ Ex-situ breeding facility⁷</td>
<td>+ From large source (>1,000 individuals)</td>
<td>+ Soft release + Annual release (9-10 month old and minimum 10-20 calves per release)⁹</td>
<td>+ Wolf management at destination + Other predator management at destination¹¹</td>
<td>+ Monitoring</td>
</tr>
<tr>
<td>7 Predator Control (and alternate prey)</td>
<td>+ Sufficient suitable habitat¹²</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>+ Reduce wolves to 2-3/1,000 km² by aerial removal + Manage bears with hunting + Smaller predators promote trapping + Entire range plus 20km buffer¹³ + Hunting of alternative prey + Annually conducted¹⁴</td>
<td>+ Monitoring</td>
</tr>
</tbody>
</table>
An Exploration of Translocation Tools for Boreal Caribou Conservation

- **Maternal Penning 1** (small fenced area, high caribou density)
 - + Suitable habitat
 - + 10-50 hectares
 - + 50% female population
 - + Releases pulsed (variable) tied to monitoring
 - + Wolf control
 - + Monitoring

- **Maternal Penning 2** (large fenced area, low caribou density)
 - + Suitable habitat
 - + 150-200 hectares
 - + 50% female population
 - + Releases pulsed (variable) tied to monitoring
 - + Release when calves 10-12 weeks old
 - + Wolf control
 - + Monitoring

- **Fence 3** (large area, non-lethal predator removal, cultural harvest of alternative prey)
 - + Suitable habitat
 - > 500 km²
 - + Bring in nearby caribou
 - + Monitor and manage to maximum sustainable yield
 - + Release outside by maternal penning at site concurrently operating where uncertain lambda
 - Predator (wolf + bear) removal (non-lethal) + deer/moose cultural harvest
 - + Monitoring

1. “Fence” in strategies 1, 2, and 10 refer to predator exclusion fencing.
2. Habitat refers to caribou habitat. Agreement on what distinguishes high vs. low quality habitat would need to be outlined by managers prior to identifying an appropriate location for the fence.
3. Male yearling caribou. Males are only required within the fence for breeding purposes.
4. “Only from” refers to source/donor caribou (i.e., from where caribou are gathered for translocation).
5. No greater than 5% of the source/donor population would be extracted for translocation, so as to reduce risks to the donor herd.
6. A suitable destination site would need to be identified by the management team in charge. Suitable sites may be identified and prioritized based on a list of criteria (i.e., decision rules), including caribou population risk status, as well as socio-political factors and logistics.
7. Captive breeding would occur at an ex-situ facility, such as a zoo or similar organization, rather than in-situ (i.e., a fenced area within caribou population's native range).
8. A release plan would need to be developed that outlines the frequency and timing of releases over a set timeframe, as well as the age- and sex-composition of release groups. In the outlined strategy, a minimum of 10 – 20 caribou between the ages of 9 – 10 months would be targeted for release each year once the captive population was large enough to withstand releases.
9. An appropriate wolf management strategy would need to be developed, which would include specifications as to the timing of wolf control (before, during and/or after caribou releases).
10. Appropriate genetic and pathogen management would be required for the captive population to maximize genetic diversity and reduce disease risks associated with raising caribou in captivity. Genetic and pathogen management plans would need to be developed prior to initiating a captive breeding program.
11. Depending upon the predator situation (density of predators, effects on caribou population, etc.) at the release location, managers may choose to control other predators in addition to wolves (e.g., bears, cougars). An appropriate management plan would need to be developed that included target species, control methods, density targets, etc.
12. Predator and alternate prey control would only occur within an area where there was sufficient suitable habitat to accommodate an expanded caribou population. Details of what is considered suitable habitat and expected expansion would need to be determined prior to initiating predator and alternate prey control.
13. Predators and alternate prey would be controlled within the target caribou population’s range and within a 20 km buffer surrounding the caribou range.
14. Predator and alternate prey control would occur annually until a set end date, or until managers deem control to be no longer necessary.
15. 50% of females within the target caribou population would be captured for maternal penning each year.
16. Years in which maternal penning is conducted would be pulsed (i.e., maternal penning would not necessarily be conducted every year). A timing strategy would need to be decided upon, which may include strategies such as four years on/one year off, or every other year, and would depend upon the status of the target caribou population as informed by ongoing population monitoring.
17. Originally named “Fence 3 (No Predator Control)”, this strategy does not involve any lethal predator control, but it does involve non-lethal predator control.
18. The fenced caribou population would need to be continuously monitored and managed to produce the maximum sustainable yield.
19. Depending upon the status of the fenced caribou population, a number of individuals would be translocated to the surrounding caribou population and/or other caribou populations. At release sites where there is uncertainty around positive/stable/negative lambda, animals to be translocated would be released to their new locations by incorporating maternal penning as a soft-release approach.
20. Deer and moose would be harvested by local First Nations communities.
5. CONSEQUENCES

SDM Process Step 5: Consequences and Uncertainty

Alternative strategies can be compared in terms of their expected outcomes in regard to different objectives. These outcomes can be estimated from a model of the system, ranging from direct expression of expert knowledge — i.e., experts are asked to provide their best assessment of expected outcomes, taking into account the known limitations of this approach and adopting best-practice protocols (Martin et al. 2012) — to a quantitative model that incorporates complex system dynamics.

Given time constraints and the large workshop group, we used belief in the relative performance of a strategy for each identified objective. Each stakeholder expressed consequences independently to provide a further sensitivity test of the group’s beliefs about the relative performance of the strategies. In each step, consensus could materialize if there was agreement amongst participants. We identified the strategy most favoured by the workshop group by evaluation at a series of steps whereby emergence of a single obviously preferred strategy at any step would allow us to stop the process.

5.1 Initial Vote for Strategies

Workshop Activity:

Once all 10 strategies were agreed upon and defined, and prior to completing the first round of the consequence table, each participant was asked to choose the one strategy they preferred. Their rationale for choosing was entirely up to them. If a participant could not choose at this point, they did not need to cast a vote. This was done to test whether there was a unanimous preference for a single strategy, suggesting the decision was clear.
Figure 3. Summary of votes for single preferred strategy.

Generally, there appeared to be no interest in translocation, and little interest in captive breeding or maternal penning based strategies (Figure 3). Most interest was toward some form of large fence, with a relatively even split across the three fence options. However, there was a wide diversity of opinions on a preferred strategy and most participants felt unable to choose a single strategy at this early point in the process. Therefore, it was clearly necessary to compare strategies in greater depth to help select a preferred strategy.
5.2 Consequence Table

Workshop Activity:
To assess the relative strength of each strategy across the agreed objectives, each participant was asked to complete a consequence table for the objectives they felt confident to judge. This was done iteratively. After a first round, the facilitators collected all participants’ responses and provided a completed summary consequence table (i.e., the average of all participants’ responses from the first round). The facilitators then requested that participants review this and complete a second round after the workshop (submitted by email). Iteration and time to reflect is important in the SDM process, and even more so in this case given the tight time constraints within the three-day workshop.

Each workshop participant was instructed to complete a consequence table following these instructions:

1. Assign 100 points to the best-performing strategy for a chosen objective.
2. Assign 0 to the worst-performing strategy for that same objective (i.e., working across a row).
3. Relative to these two benchmarks (best and worst), assign points between 0 - 100 to all other strategies against that objective. For example, if a strategy is equally as good as the best-performing strategy, assign it 100; if one strategy is halfway between the two extremes (best vs. worst), assign it 50 points.

Participants were instructed that if they perceived there to be differences between strategies in how they perform against an objective, then they must give at least one strategy a value of 0 (worst) and at least one strategy a value of 100 (best). However, if they perceived all strategies to perform equally against an objective then they were to score them all 100.

Multiple strategies could be given the same value (e.g., if some were deemed to equally be the poorest in meeting an objective, they could receive 0s; if equally best, they could receive 100s; if equally somewhere in between, more than one strategy could receive a 30 or a 50, etc.).

Participants were instructed to only score against objectives with which they were comfortable ranking. Therefore, in many cases, participants left certain rows blank.

Second-round responses were received from 28 participants representing a variety of different stakeholder groups: government (5), industry (6), academic/independent (7), zoo (6), NGO (3) and First Nation (1). Here, we provide a summary of the second-round consequence table of aggregated mean scores (Table 4). The aggregated consequence table provides insight into the collective expert opinion on the strategy that performs best for a given objective. In other words, it allows for clear evaluation of what strategies could be pursued to achieve different objectives.
Table 4: Aggregated consequence table (mean scores) with the best-performing strategy for each objective shaded in blue. Objectives with multiple indicators also have an average of these indicators. Note that due to a diversity in expert opinion and aggregation, no single objective (row) contains scores of 0 or 100.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Indicator</th>
<th>Sample Size (# Responses)</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fence 1 Fence 2 Translocation Captive Breeding 1 Captive Breeding 2 Captive Breeding 3 Predator Control Maternal Penning 1 Maternal Penning 2 Fence 3</td>
</tr>
<tr>
<td>Caribou extinction probability</td>
<td>Probability of extinction</td>
<td>26</td>
<td>66 83 20 51 58 49 51 61 65</td>
</tr>
<tr>
<td></td>
<td>Proportion of range occupied</td>
<td>25</td>
<td>44 54 33 50 39 55 58 51 56 45</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>55 69 27 51 36 56 53 51 58 55</td>
</tr>
<tr>
<td>Biodiversity impact</td>
<td>Similarity</td>
<td>23</td>
<td>40 41 68 68 83 61 33 65 67 58</td>
</tr>
<tr>
<td></td>
<td>Evenness</td>
<td>22</td>
<td>40 41 68 68 80 59 33 61 64 60</td>
</tr>
<tr>
<td></td>
<td>Richness</td>
<td>21</td>
<td>41 41 70 71 83 64 35 60 63 53</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>40 41 69 69 82 61 34 62 64 57</td>
</tr>
<tr>
<td>Invasiveness of management</td>
<td>Rank invasiveness</td>
<td>25</td>
<td>45 54 40 28 42 21 42 39 46 70</td>
</tr>
<tr>
<td></td>
<td>Frequency of invasiveness</td>
<td>24</td>
<td>46 53 57 30 41 24 43 39 43 72</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>46 54 48 29 42 22 42 39 44 71</td>
</tr>
<tr>
<td>Welfare of all animals</td>
<td>Number of 5 freedoms compromised</td>
<td>13</td>
<td>38 46 52 53 68 46 31 51 56 78</td>
</tr>
<tr>
<td></td>
<td>Point on CCAC</td>
<td>10</td>
<td>37 47 52 55 72 49 25 54 61 75</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>37 47 52 54 70 48 28 52 59 76</td>
</tr>
<tr>
<td>Public appreciation</td>
<td>Number of positive news stories</td>
<td>22</td>
<td>55 57 45 57 77 51 4 59 65 82</td>
</tr>
<tr>
<td>Public acceptance of management</td>
<td>Number of official complaints</td>
<td>22</td>
<td>51 53 50 53 71 45 13 55 60 74</td>
</tr>
<tr>
<td></td>
<td>Number of negative news items</td>
<td>24</td>
<td>52 52 53 55 73 47 15 53 59 73</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>51 52 52 54 72 46 14 54 60 73</td>
</tr>
<tr>
<td>Spiritual and cultural connection</td>
<td>Maintain or improve</td>
<td>6</td>
<td>76 81 42 39 49 38 6 70 76 74</td>
</tr>
<tr>
<td>Livelihood opportunities for First Nations</td>
<td>Annual allowable harvest</td>
<td>22</td>
<td>80 89 12 23 21 25 44 34 36 58</td>
</tr>
<tr>
<td></td>
<td>Number of jobs created</td>
<td>20</td>
<td>73 81 18 33 31 36 28 58 65 69</td>
</tr>
<tr>
<td></td>
<td>$ value / year of contracts</td>
<td>18</td>
<td>73 83 21 33 29 36 33 54 65 69</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>75 84 17 30 27 32 35 49 55 66</td>
</tr>
<tr>
<td>Cost of management</td>
<td>Total cost over 20 years</td>
<td>23</td>
<td>48 37 67 35 43 27 68 57 53 43</td>
</tr>
<tr>
<td>Access to resources</td>
<td>% tenured land available</td>
<td>18</td>
<td>60 59 49 73 72 76 69 49 41 56</td>
</tr>
<tr>
<td></td>
<td>Number of days of operating restrictions</td>
<td>15</td>
<td>63 62 51 69 71 71 65 43 37 60</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>62 61 50 71 72 73 67 46 39 58</td>
</tr>
</tbody>
</table>
The completed consequence table (Table 4) shows that the best strategy (shaded blue) varied across objectives. Generally, Fence 3 appeared to perform relatively better on invasiveness, welfare, appreciation, and acceptability objectives, as indicated by the fact that it was the preferred strategy for the ‘Invasiveness of management’, ‘Welfare of animals’, ‘Public appreciation’, and ‘Public acceptance’ objectives. However, it performed relatively worse on objectives related to biological and economics factors, as well as spiritual and cultural connection. For example, Fence 2 was the preferred strategy for meeting the ‘Caribou extinction probability’ objective (average over both indicators), as well as the ‘Livelihood opportunities for First Nations’ and ‘Spiritual and cultural connection’ objectives. Captive Breeding 2 was the preferred strategy for the ‘Biodiversity impact’ objective (and was tied with other strategies for the ‘number of negative news items’ and ‘number of days of operating restrictions’ indicators of success). Captive Breeding 3 was the preferred strategy for the ‘Access to resources’ objective overall, and captive breeding strategies in general were judged to best meet both of the objective’s indicators of success. Predator Control was the preferred strategy for the ‘Cost of management’ objective (and for the individual ‘proportion of range occupied’ indicator of success). Neither wild-to-wild translocation nor either of the maternal penning strategies were considered to best meet any objectives. Due to the variability in the favoured strategy across objectives, it was necessary to trade off between objectives to select a single best strategy.
6. TRADE-OFFS

SDM Process Step 6: Trade-offs and Uncertainty in Optimal Choice

Good decisions are those that we believe are most likely to best allow us to achieve our objectives. In single-objective decisions, we can easily choose the strategy that provides the best reward. When there is more than one objective, we must consider these carefully and balance (trade off) across them, particularly when multiple objectives are in conflict with one another. SDM provides a range of tools that can assist in such trade-offs.

Facilitator Analysis:

This workshop highlighted multiple objectives, some of which are conflicting. To find an optimal solution, the facilitators used a simple linear additive model to calculate the expected value of each strategy that is weighted by the importance placed on each objective (see example below). The strategy with the greatest expected value was the strategy considered to perform the best, i.e. the optimal decision. The weight placed on each objective was carefully elicited from each participant. The facilitators also acknowledged that values are personal and can be difficult to aggregate. Therefore, they repeated the analysis by calculating the expected value of strategies using each participant’s objective weights. This provided the optimal decision for each person, based on their values. This process is explained in further detail in the sections below.

Example of process for caribou extinction probability (Objective 1) and Fence 1 (Strategy 1).
6.1 Weighting Objectives

Workshop Activity:

To weight objectives, workshop participants were instructed to:

1. Examine the completed consequence table of averaged relative performance. This gave participants some context to weight objectives (i.e., how much objectives were valued relative to one another). In some cases our values are fixed (e.g., we want to save species no matter the cost), but in most cases the real answer is "it depends" (e.g., cost may be more or less important comparing a 10% decrease in extinction probability from 99% to 89% versus 29% to 19% and/or if the cost for a 10% decrease in extinction probability is obtained by spending $1,000 or $100,000). Looking at the completed consequence table and associated notes detailing each strategy helps provide the relative scales and performance between objectives with some context (although this remained somewhat difficult due to the qualitative approach used).

2. Choose the objective judged to be most important and assign it 100 points.

3. Relative to the top choice, assign each of the other objectives points between 0 and 100. For example, assign an objective viewed equally important as the top choice 100 points, one viewed to be half as important 50 points and one not considered important at all 0 points. This means that multiple objectives may be given the same value if judged to be equally as important. No objective need be given a 0 if none were judged to be of 0 value.
Table 5: Objective weight scores of each participant who responded in round 2

<table>
<thead>
<tr>
<th>Participant</th>
<th>Caribou extinction probability</th>
<th>Biodiversity impact</th>
<th>Invasiveness of management</th>
<th>Welfare of all animals</th>
<th>Public appreciation of caribou</th>
<th>Public acceptance of management</th>
<th>Spiritual and cultural connection</th>
<th>Livelihood opportunities for First Nations</th>
<th>Cost of management</th>
<th>Access to resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>70</td>
<td>20</td>
<td>50</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>20</td>
<td>90</td>
<td>0</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>80</td>
<td>50</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>90</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>80</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>100</td>
<td>70</td>
<td>100</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>20</td>
<td>70</td>
<td>90</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>60</td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>80</td>
<td>50</td>
<td>90</td>
<td>.</td>
<td>10</td>
<td>70</td>
<td>60</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>30</td>
<td>10</td>
<td>.</td>
<td>50</td>
<td>80</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>40</td>
<td>100</td>
<td>70</td>
<td>90</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>30</td>
<td>80</td>
<td>40</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>90</td>
<td>50</td>
<td>80</td>
<td>30</td>
<td>60</td>
<td>20</td>
<td>40</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>50</td>
<td>70</td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>90</td>
<td>100</td>
<td>50</td>
<td>60</td>
<td>40</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>90</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>70</td>
<td>20</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>100</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>70</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>100</td>
<td>70</td>
<td>40</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>100</td>
<td>50</td>
<td>90</td>
<td>80</td>
<td>20</td>
<td>90</td>
<td>70</td>
<td>70</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Average</td>
<td>96</td>
<td>74</td>
<td>63</td>
<td>76</td>
<td>47</td>
<td>52</td>
<td>47</td>
<td>50</td>
<td>51</td>
<td>34</td>
</tr>
</tbody>
</table>
There was some variation across participants in how much each objective was valued (Table 5), and hence this may influence the preferred decision. In general, the group considered the probability of caribou extinction, biodiversity impact and welfare of all animals to be the most important objectives to consider.

Facilitator Analysis:

The facilitators normalized each participant’s objective weight scores to their sum to reflect their relative importance in the decision context.

6.2 Normalizing the Consequence Table

Facilitator Analysis:

In order to calculate the expected value of each strategy, the facilitators normalized the raw aggregated consequence table (Table 4) so that the contents of each cell were on a uniform scale between 0 (worst) and 1 (best) for each objective. For objectives that had multiple indicators of success, the facilitators combined these into a single average score and only used this average (creating a 10x10 matrix of objectives and strategies; Table 6).

Table 6: Normalized consequence table

<table>
<thead>
<tr>
<th>Objective</th>
<th>Fence 1</th>
<th>Fence 2</th>
<th>Translocation</th>
<th>Captive Breeding 1</th>
<th>Captive Breeding 2</th>
<th>Captive Breeding 3</th>
<th>Predator Control</th>
<th>Maternal Penning 1</th>
<th>Maternal Penning 2</th>
<th>Fence 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caribou extinction probability</td>
<td>0.67</td>
<td>1.00</td>
<td>0.00</td>
<td>0.57</td>
<td>0.23</td>
<td>0.71</td>
<td>0.64</td>
<td>0.59</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>Biodiversity impact</td>
<td>0.13</td>
<td>0.15</td>
<td>0.73</td>
<td>0.73</td>
<td>0.57</td>
<td>0.00</td>
<td>0.58</td>
<td>0.64</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Invasiveness of management</td>
<td>0.47</td>
<td>0.64</td>
<td>0.53</td>
<td>0.13</td>
<td>0.39</td>
<td>0.00</td>
<td>0.40</td>
<td>0.34</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>Welfare of all animals</td>
<td>0.20</td>
<td>0.39</td>
<td>0.50</td>
<td>0.54</td>
<td>0.87</td>
<td>0.41</td>
<td>0.00</td>
<td>0.51</td>
<td>0.63</td>
<td>1.00</td>
</tr>
<tr>
<td>Public appreciation of caribou</td>
<td>0.65</td>
<td>0.67</td>
<td>0.52</td>
<td>0.67</td>
<td>0.94</td>
<td>0.60</td>
<td>0.00</td>
<td>0.70</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td>Public acceptance of management</td>
<td>0.63</td>
<td>0.64</td>
<td>0.64</td>
<td>0.67</td>
<td>0.98</td>
<td>0.55</td>
<td>0.00</td>
<td>0.67</td>
<td>0.77</td>
<td>1.00</td>
</tr>
<tr>
<td>Spiritual and cultural connection</td>
<td>0.94</td>
<td>1.00</td>
<td>0.48</td>
<td>0.45</td>
<td>0.58</td>
<td>0.42</td>
<td>0.00</td>
<td>0.86</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>Livelihood opportunities for First Nations</td>
<td>0.87</td>
<td>1.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.15</td>
<td>0.23</td>
<td>0.27</td>
<td>0.47</td>
<td>0.57</td>
<td>0.72</td>
</tr>
<tr>
<td>Cost of management</td>
<td>0.52</td>
<td>0.26</td>
<td>0.97</td>
<td>0.19</td>
<td>0.39</td>
<td>0.00</td>
<td>0.10</td>
<td>0.72</td>
<td>0.63</td>
<td>0.39</td>
</tr>
<tr>
<td>Access to resources</td>
<td>0.66</td>
<td>0.62</td>
<td>0.32</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
<td>0.82</td>
<td>0.21</td>
<td>0.00</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Facilitator Analysis:
The expected value of each strategy was calculated using a simple additive multi-objective function (Keeney & Raiffa 1993), whereby the aggregate outcome of each strategy was calculated as:

$$EV_{Total(i)} = \sum_{j=1}^{l} EV(j)w_j$$

where $EV_{Total(A)}$ is the aggregate expected value of strategy A, EV_j is the expected outcome of strategy A relative to objective j, and w_j is a score between 0 and 1 reflecting the importance objective j relative to the whole set of objectives. Initially, the facilitators used an average of objective preference scores across participants to reflect the overall preferences of the group (Table 7). The strategy with the highest expected value was the one believed to perform best.

Table 7: Weighted normalized scores for each strategy, which reflects the relative preferences for different objectives, and the sum, which provides the expected value of each strategy. The best performing strategy is shaded in blue.
The weighted normalized scores indicated that Fence 3 was the strategy believed to perform best when using average objective preference scores of the entire group, followed closely by Fence 2. The top two identified strategies were based around fences, indicating a group preference for this type of population-based management tool. Maternal Penning 2 fell closely behind the top two strategies, followed by Captive Breeding 2, Maternal Penning 1 and Fence 1 (tied), Captive Breeding 1, Captive Breeding 3, and Translocation (in order of decreasing expected value). Predator control was judged to be the lowest-ranking strategy.

6.4 Sensitivity to Stakeholder Values

Facilitator Analysis:

It is almost certainly incorrect to use mean objective weights, as it is inappropriate to aggregate personal values. Therefore, to test how robust the selected top strategy was to variation in personal values, the facilitators re-calculated the expected values using each participant’s objective weights independently.

In all cases, the strategy with the highest expected value was Fence 3. We can conclude that the variation across participants in the value they place on objectives does not influence the optimal strategy. A finding this robust should provide decision makers with a strong indication of the most-preferred and best-supported management option.
CONCLUSIONS

Based on average consequence scores across the entire workshop group, Fence 3 was the strategy judged to best meet the combination of identified objectives. Furthermore, Fence 3 was deemed the best strategy for each participant, when their own objective weights were used. This outcome reinforces earlier indications favouring large predator exclosure fences as a worthwhile population-based management tool to explore.

That being said, different strategies were judged to best meet different objectives; therefore, though Fence 3 performed best overall, another strategy may better meet a subset of objectives. We recommend that further development carefully consider the components deemed attractive about the Fence 3 strategy, and perhaps also explore options that may enhance its value even further; for example, by adjusting it against objectives to which it performed relatively poorly.

Agencies may now determine what strategy(ies) would be most worthwhile to advance, depending upon: 1) a specific subset of objectives they value most or, 2) the full set of objectives. Structured decision-making may assist in action implementation, as far greater detail would be necessary to fully develop and implement any strategy. Therefore, we recommend conducting additional iterations of the SDM process in order to focus and develop a detailed implementation plan.

Agencies interested in advancing any of these strategies should form the necessary partnerships and follow appropriate regulatory processes as soon as possible to address the urgent and complex situation of improving the conservation status of boreal caribou populations in Western Canada.
REFERENCES

Annex 1. Detailed strategies developed by individual working groups

Maternal Penning

<table>
<thead>
<tr>
<th>WG</th>
<th>Triggers/Requirements</th>
<th>Strategy Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Population size</td>
<td>Population trend</td>
</tr>
<tr>
<td>1</td>
<td>Medium (50-200)</td>
<td>Declining</td>
</tr>
<tr>
<td></td>
<td>< 50 individuals</td>
<td>Declining</td>
</tr>
<tr>
<td>3</td>
<td>Medium (50-150) smaller population is not sustainable</td>
<td>Declining</td>
</tr>
<tr>
<td>4</td>
<td>Small (20-50)</td>
<td>Declining</td>
</tr>
<tr>
<td>5</td>
<td>50-200</td>
<td>Declining (as long as defined)</td>
</tr>
<tr>
<td>WG</td>
<td>Source Population</td>
<td>Captive Population</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>(Size + Trend)</td>
<td>Location of captive-breeding</td>
</tr>
<tr>
<td>1</td>
<td>>1,000, positive lambda</td>
<td>Ex-situ at zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex-situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>>1,000 caribou and stable</td>
<td>Outside of the herd range - at a zoo or specialized facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research and lifeboat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforcement or reintroductions</td>
</tr>
<tr>
<td>3</td>
<td>Small and large - rescue small herds and use other herds for genetics.</td>
<td>Outside of the herd range - at a zoo or specialized facility</td>
</tr>
<tr>
<td>4</td>
<td>Question is not whether small or large population, or whether increasing or decreasing - could be from anywhere, from multiple different populations. Based on who is willing, genetics (want diversity)</td>
<td>Zoo or similar facility</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Reinforcement</td>
</tr>
</tbody>
</table>

Given the population sizes in the provinces right now - do not see this as helpful currently - also captive bred animals will not be good enough to be released.
Wild-to-wild Translocation

<table>
<thead>
<tr>
<th>WG</th>
<th>Source Population</th>
<th>Destination</th>
<th>Release Plan</th>
<th>Wolf Control</th>
<th>Monitoring</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>At least 1,000 animals with positive growth ANQ/OR multiple source herds (large or multi medium, i.e., 50 - 200)</td>
<td>Suitable (small population, i.e., < 50 animals, with sufficient habitat), only do to destination where drivers of decline known and fixed.</td>
<td>Release late March in caribou habitat. Soft release (pen with resident animals for 3-10 days before release). Release in 1 or 2 years; 1 translocated animal for each animal in source herd (so 20-75 for a max 50 animal receiving herd). Maximum of 5% of donor herd.</td>
<td>Reduce below rec./manage distribution (synchronous elimination of wolves at release site + take measures to maintain long-term low density of wolves)</td>
<td>Annual 3 yrs. herd size + calf recruitment then longer term 10 years + radio collar all released animals + genes of founders. Also need to monitor wolf density and mortality inspections.</td>
<td>Utilize local community work force</td>
</tr>
<tr>
<td>2</td>
<td>NOT VIABLE OPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No appropriate source herds in B.C. or AB</td>
<td>NOT VIABLE OPTION because there is no appropriate source herd in B.C. or AB; could use surplus animals from fence or captive population; threats mitigated and good range condition</td>
<td>Late winter; soft release (preferably resident animals in pen with release animals)</td>
<td>As necessary</td>
<td>Ongoing, adaptive management and monitoring (at least 10 years)</td>
<td>Opportunities for First Nations and other communities; short term</td>
</tr>
<tr>
<td>4</td>
<td>VIABLE OPTION?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Only problem with wild-to-wild is that you are depleting the source population; otherwise, maybe better than captive breeding. So if you have a source population, it is a viable technique. Though may be some logistical issues (e.g., managing for disease). Main determinant is a suitable source population.</td>
<td>Population not limited by juvenile/sub-adult/adult survival (calf predation may still be high); suitable habitat; small and/or decreasing (particularly good for small populations, i.e., < 50 animals)</td>
<td>Winter, not too close to calving; pregnant cows; probably soft release</td>
<td>Preferable</td>
<td>Needed (monitoring of both source and target herds)</td>
<td>Limited</td>
</tr>
</tbody>
</table>

Fencing

<table>
<thead>
<tr>
<th>WG</th>
<th>Source Population</th>
<th>Fence Location</th>
<th>Fence Habitat</th>
<th>Supplemental Feeding</th>
<th>Caribou Density</th>
<th>Fence Size</th>
<th>Predator Management</th>
<th>Alternate Prey Management</th>
<th>Releases From Fence</th>
<th>Monitoring</th>
<th>Caribou Harvest In Fence</th>
<th>Employment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low calf survival + large population size + declining population</td>
<td>Within larger range</td>
<td>Suitable quality - sufficient for perpetual foraging</td>
<td>Yes</td>
<td>50 (0.5 caribou per km^2)</td>
<td>100 km^2</td>
<td>Remove or select sites where absent + mop up incursions + don’t manage outside except when releasing (at release site) - aggressive control of wolves</td>
<td>Assess / manage. Remove alternates from inside the enclosure and manage outside to target levels</td>
<td>Both at site or translocation to other sites</td>
<td></td>
<td>First Nations or release of males</td>
<td>First Nations opportunity for involvement/management</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Declining population and approx. half the female population inside the fence; if very small population and stable may be considered.</td>
<td>Needs to consider refuge habitat from fire within fence; within larger range; needs to be in a place with good access.</td>
<td>Suitable quality - food availability; refuge for fire (i.e., small lake); water availability; least existing disturbance and activity as possible.</td>
<td>Yes, when natural forage not enough (monitor to know when to do this); also use it to facility husbandry techniques to aid monitoring and releases</td>
<td>Max 3 caribou per km^2, ~ 90 caribou + manage at lambda 1 inside fence (based on available data at this number they can be at optimal health and not food regulated)</td>
<td>30 km^2</td>
<td>Remove inside, don’t manage outside (because yearlings are being released); if an area outside the fence has high adult mortality, do wolf control in that area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergency response to knock down fence quickly if fire is coming.</td>
<td></td>
</tr>
<tr>
<td>Source from within fence location herd, but can also source from adjacent population</td>
<td>Within herd range</td>
<td>High quality habitat in native range</td>
<td>Maybe; need to monitor veg, quality and body condition; density should be well below carrying capacity; optional rotational grazing</td>
<td>0.5 animal/km²</td>
<td>100 km² as pilot; avoid corners; need to work with topography</td>
<td>Inside fence: bear and wolves removed; could be removed by First Nations</td>
<td>Remove and manage all moose (4) and WTD (120) and beaver population managed from fenced area</td>
<td>Release calves and some older cows to immediate adjacent areas; retain some yearlings as breeding stock; manage proportion of yearlings and adults</td>
<td>Inside fence and outside fence (fire Remove inside predators, and maybe outside depending on context</td>
<td>Use local communities to harvest surplus yearling males and other large mammals inside the fence</td>
<td>Large opportunities for First Nations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large enough (large) to release animals into</td>
<td>Within larger range</td>
<td>High habitat suitability, diminishing future threats, with sufficient access.</td>
<td>Yes, with monitoring</td>
<td>Greater than 300 km²</td>
<td>Based on estimates of available forage.</td>
<td>Remove inside predators, and maybe outside depending on context</td>
<td>Context dependent</td>
<td>Fire + survival + nutrition (inside pen)</td>
<td>First Nations opportunity for involvement/management</td>
<td>*See Comment below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similar to captive-breeding (similar issues)</td>
<td>Within the larger range of the existing population</td>
<td>Development doesn't matter in terms of project success, but public acceptance may be a problem. No additional habitat loss. *Need access management. Less activity inside better.</td>
<td>Depends on habitat inside the fence; No more than 50 animals (biggest concern is whether they eat their feeding)</td>
<td>100 - 500 km²</td>
<td>Remove inside; whether needed outside is unclear (whether releasing, area you're doing it in)</td>
<td>No white-tailed deer; more moose you can take out the better</td>
<td>Would need handling facility to capture and move out. May move animals far away to other populations.</td>
<td>Yes; Vegetation, caribou population, disease, access, development, before fencing, after)</td>
<td>First Nations harvest of male yearlings</td>
<td>Hug. Very labor intensive.</td>
<td>Minimum 10 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Comment: Significant portion of the natural population is subject to: loss of anti-predator behaviour, fire, disease. Social license is critical in terms of potential industrial impacts within and outside the fence. Concern is this initiative withdraws from the population productive elements for a certain leg (3-4 years). 1) pulling animals out of a herd that's already hurting, without plans to put them back in and 2) reproductive lag (3-4 years) to get population back to a previous level assuming inside/outside fences remain the same = extremely risky.

Predator and Alternate Prey Control (Additional Strategies)

<table>
<thead>
<tr>
<th>Site Habitat</th>
<th>Site Predators</th>
<th>Location</th>
<th>Density</th>
<th>Size</th>
<th>Monitoring</th>
<th>Alternate Prey</th>
<th>Harvest</th>
<th>Employment</th>
<th>Population Trend</th>
<th>High Cow Mortality</th>
<th>Bear Management</th>
<th>Role of Population</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient excess habitat to accommodate expanded population</td>
<td>Reduce wolves to 2-3/1,000 km² by areal removal. Manage bears with liberal hunting seasons. Smaller predators (lynx, etc.) promote and enable increase trapping</td>
<td>Entire range + 20 km buffer around it</td>
<td>2-3 / 1,000 km²</td>
<td>Entire caribou range</td>
<td>Caribou numbers and recruitment, caribou vital rates, wolf densities</td>
<td>Liberalize big game hunting in the buffer zone</td>
<td>Complete - all wolves</td>
<td>Trappers, culling, tap into local community expertise and interest</td>
<td>Increasing population size and + lambda</td>
<td>Yes</td>
<td>Via hunting regulations</td>
<td>Self-sustaining herd</td>
<td>Annual winter areal program and annual hunting/trapping season</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination</th>
<th>Suitable Habitat</th>
<th>Employment</th>
<th>Social License</th>
<th>Alternate Prey Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining population of caribou; small population <300; know that wolves are main predator</td>
<td>Collar Judas animals to help with locating packs</td>
<td>Potentially for trappers and biologists</td>
<td>Need to do it forever; public support may be difficult</td>
<td>Difficult to control</td>
</tr>
</tbody>
</table>
Annex 2. Success Statements

- Clear understanding of where captive breeding will be applied (if at all) in boreal caribou management in B.C., recognizing the focus of the workshop is Alberta. Also expectation of B.C. to contribute to the captive breeding initiative.
- Impetus for action (versus another report to file on the shelf)
- Identify a feasible and practical approach that could be used to supplement threatened boreal caribou herds.
- Scientific-based determination of value of conservation translocation to caribou population viability (evidence based - what effort is required to have a population-level impact?)
- Success would be that this workshop helps caribou for decades, and that the process helps us to refine global facilitation techniques for conservation translocations.
- Scoping new tools that can [be] enabled [within] Alberta's range plans beyond those currently in use.
 - i) In addition to conserving habitat and allowing for connectivity (1st priority), what other tools can also be used to maintain caribou AND functioning ecosystems? ii) To determine if there are any elements of augmentation that can be forecast (and clearly demonstrated) to have merit at caribou-local population scales, and iii) ensure that augmentation proposals and actions don't undermine required recovery actions for woodland caribou in Alberta.
- Achieve a common vision for managing our wild spaces that address human wellbeing, while allowing caribou to flourish.
- That we come out with very clear rationale and objectives for why, when, and where the techniques we are discussing make sense as a strategy for boreal caribou conservation.
- The workshop will be a success if our discussions lead to a [strategic] and timely implementation of breeding and translocation tools that is pragmatic, adaptive, and ultimately effective.
- To have practical discussions around the state of caribou in Western Canada and come away with a clear path forward - an actual plan. Success would be to come to a consensus.
- An assessment and plan of action for the successful implementation of management tools but only as a temporary complement to large-scale habitat protection and restoration.
- Determine pros and cons and ranking of different recovery techniques for caribou.
- I hope that our shared experience with captive caribou will help the species in the wild.
- Open assessment of conservation breeding/translocation tools and decision criteria for such tools.
- Consensus on the appropriate role of these techniques in caribou recovery efforts.
- Identification of suite of available tools and criteria for application of each tool (e.g., under what conditions would you apply reinforced captive breeding) at what spatial scale, for what duration, etc.
- To have health and the role of infectious disease better recognized in caribou conservation efforts (and cumulative effects assessment) and deeper consideration given to the value of maintaining the endemic pathogen fauna in conservation activities/translocations 2) Learn/understand more about the socio-political issues associated with caribou conservation 3) Develop new friendships and collaborations 4) Intellectual stimulation and new insights.
- The development of an interdisciplinary planning process for solution-based action for the preservation of caribou populations.
- Success for the workshop would be for participants to have a common agreement of what can work, ecologically, over the long-term rather than what people "think" or "hope" will work.
- A suite of specific and actionable management measures/recommendations that can be used in Western Canada, which are also complementary to proposed/ongoing caribou initiatives.
- To come up with some innovative and collaborative ideas that can be further explored.
- To go from discussion to planning (and eventually implementation) to use some of the extreme conservation actions (captive breeding, penning, etc.) for caribou herds in decline (particularly in AB).
- For me, translocation and conservation breeding appear as suitable tools, but also as tools that are "almost desperate" and "last chance" tools... success would be that we do not accept to rely only on such tools to keep business as usual, rather than putting efforts [into] changing the way we deal with land-use
- Success for this workshop would be recognizing that solutions for caribou recovery won't be one-size-fits-all and that each range will present its own challenges; and in most cases the 'solution' won't be clear.
- For me, success for this workshop would be the achievement of: 1) clear government policy (provincially & federally); 2) positive collaboration amongst energy, forestry, government, First Nations; 3) To create the establishment of self-sustaining B.C. & AB populations.
- Make actual decisions to move forward. Have AEP take the tools to move to action. Have a clear idea of which tools to invest in for NE Alberta. Must be able to translocate this info and time into action.
- Clarity on relative possible caribou population increases for lower cost, while reducing risks of population management practices to caribou. I also want to be part of a team that helped to significantly improve caribou populations in Alberta, on a working landscape.
- Success for me would be to arrive at a point at the end of the workshop where we have reached a conclusion. Can the tools discussed be incorporated or will they not? Instead of just needing to talk more we know more than we do today about their utility.
- Real commitment to action to help caribou populations in areas of need.
- To pool all of the current strategies and tools with new ones and develop new insights that can see the caribou population increase.
- Document where parties involved develop framework to provide simple direction and achievable actions using previous experience and innovative approaches.
- I would like to see more thought/discussion on both appropriate areas to do this work and measures of success.
- Broaden the perspective of what influences habitat may have in terms of translocation and reintroduction programs.
- Focused discussion on caribou recovery initiatives without habitat bias.
- Gain a greater understanding (including the benefits and limitations) of conservation breeding and translocation tools in order to confidently make decisions regarding the application of those tools to specific circumstances. Particularly interested in captive breeding.
Annex 3. Workshop Agenda

(P = Plenary; WG = Working Group)

DAY 1

- Welcome
- Background to workshop, and Purpose
- Introductions by host team
- Introductions by participants
- Workshop logistics and ground rules
- Our approach to finding a solution—Structured Decision Making (P)
- Review of current status and trends by province/population (P)
- Jurisdictional summary of legal context for boreal caribou conservation and recovery (P – summaries by regional government representatives)
- Scoping of ‘Conservation Needs’—Facilitators present a ‘Conservation Needs’ draft; Discuss and edit draft (WG)
- Review and agreement of ‘Conservation Needs Statement’ (P)
- Development of Objectives—Draft Objectives (WG and P)
- Indicators of Success—Outline how the Objectives could be measured (WG, then P)
- Threats to boreal caribou—Draft a conceptual framework on boreal caribou system and key threats (WG)

DAY 2

- Day 1 recap. (P)
- Review of Objectives and Indicators of Success (P)
- Review of Threats Table (compilation of all working groups; P)
- For each threat, assess how strong threat is (low, med, high) and how strong evidence is (low, med, high) (WG)
- Summary of each population management tool by key experts (P)
- Building strategies with each population management tool as basis (WG)

DAY 3

- Day 2 recap. (P)
- Review of Strategies table (P)
- Revision/flush out strategies (WG)
- Quick overview of what was decided in WGs (P)
- Review and revise the Conservation Needs Statement (P)
- Discussion around proposed statements about workshop (P)
- Objectives vs. Strategies table—circle first choice strategy; weight objectives; complete consequence tables (Individual)
- Closing of workshop
Annex 4. Participant List and Contact Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amit Saxena</td>
<td>Devon Energy Corporation</td>
<td>Amit.Saxena@dvn.com</td>
</tr>
<tr>
<td>Axel Moehrenschlager</td>
<td>Calgary Zoo; IUCN</td>
<td>AxelM@calgaryzoo.com</td>
</tr>
<tr>
<td>Chris Ritchie</td>
<td>B.C. Government</td>
<td>Chris.Ritchie@gov.bc.ca</td>
</tr>
<tr>
<td>Christine Gagnon</td>
<td>Zoo sauvage de Saint-Félicien</td>
<td>christine.gagnon@zoosauvage.org</td>
</tr>
<tr>
<td>Clayton Cunningham</td>
<td>Beaver Lake Cree Nation</td>
<td>ccblcn@gmail.com</td>
</tr>
<tr>
<td>Councillor Kurtis Gladue</td>
<td>Beaver Lake Cree Nation</td>
<td></td>
</tr>
<tr>
<td>Dale Seip</td>
<td>B.C. Government</td>
<td>dale.seip@gov.bc.ca</td>
</tr>
<tr>
<td>Danielle Pendlebury</td>
<td>Canadian Parks and Wilderness Society (CPAWS)</td>
<td>dpendlebury@cpaws.org</td>
</tr>
<tr>
<td>Dave Hervieux</td>
<td>Government of Alberta</td>
<td>Dave.Hervieux@gov.ab.ca</td>
</tr>
<tr>
<td>David Browne</td>
<td>Canadian Wildlife Federation</td>
<td>davidb@cwf-fcf.org</td>
</tr>
<tr>
<td>Doug Whiteside</td>
<td>Calgary Zoo</td>
<td>dougw@calgaryzoo.com</td>
</tr>
<tr>
<td>Grant Furniss</td>
<td>Calgary Zoo</td>
<td>grantf@calgaryzoo.com</td>
</tr>
<tr>
<td>Greg Wilson</td>
<td>Environment Canada</td>
<td>Greg.Wilson@canada.ca</td>
</tr>
<tr>
<td>Helen Schwantje</td>
<td>B.C. Government</td>
<td>Helen.Schwantje@gov.bc.ca</td>
</tr>
<tr>
<td>Jamie Dorgan</td>
<td>Calgary Zoo</td>
<td>JamieD@calgaryzoo.com</td>
</tr>
<tr>
<td>Jennifer Shalagan</td>
<td>Husky Energy</td>
<td>jennifer.shalagan@huskyenergy.com</td>
</tr>
<tr>
<td>John Cook</td>
<td>National Council for Air and Stream Improvement (NCASI)</td>
<td>jcook@ncasi.org</td>
</tr>
<tr>
<td>John Ewen</td>
<td>Zoological Society of London; IUCN</td>
<td>john.ewen@ioz.ac.uk</td>
</tr>
<tr>
<td>John Wilmshurst</td>
<td></td>
<td>jfwilmshurst@gmail.com</td>
</tr>
<tr>
<td>Jon Gareau</td>
<td>Canadian Natural Resources Limited (CNRL)</td>
<td>Jon.Gareau@cnrl.com</td>
</tr>
<tr>
<td>Layla Neufeld</td>
<td>Parks Canada</td>
<td>lalenia.neufeld@pc.gc.ca;</td>
</tr>
<tr>
<td>Lisa Bridges</td>
<td>Statoil Canada</td>
<td>LBRID@STATOIL.COM</td>
</tr>
<tr>
<td>Lori Neufeld</td>
<td>Imperial Oil</td>
<td>lori.r.neufeld@esso.ca</td>
</tr>
<tr>
<td>Marco Musiani</td>
<td>University of Calgary</td>
<td>mmusiani@ucalgary.ca</td>
</tr>
<tr>
<td>Mark Boulton</td>
<td>Suncor Energy Inc.</td>
<td>mboulton@suncor.com</td>
</tr>
<tr>
<td>Mark Stanley Price</td>
<td>Wildlife Conservation Research Unit, University of Oxford; IUCN</td>
<td>mark.stanleyprice@zoo.ox.ac.uk</td>
</tr>
<tr>
<td>Martin-Hugues St-Laurent</td>
<td>Université du Québec à Rimouski</td>
<td>martin-hugues_st-laurent@uqar.ca</td>
</tr>
<tr>
<td>Mike Simpson</td>
<td>Devon Energy Corporation</td>
<td>Mike.Simpson@dvn.com</td>
</tr>
<tr>
<td>Natasha Lloyd</td>
<td>Calgary Zoo</td>
<td>NatashaL@calgaryzoo.com</td>
</tr>
<tr>
<td>Owen Slater</td>
<td>University of Calgary</td>
<td>oslater@ucalgary.ca</td>
</tr>
<tr>
<td>Rachel Cook</td>
<td>National Council for Air and Stream Improvement (NCASI)</td>
<td>rcook@ncasi.org</td>
</tr>
<tr>
<td>Ron Bennett</td>
<td>Environment Canada</td>
<td>ron.bennett@ec.gc.ca</td>
</tr>
<tr>
<td>Salman Rasheed</td>
<td>Parks Canada</td>
<td>Salman.Rasheed@pc.gc.ca</td>
</tr>
<tr>
<td>Sandie Black</td>
<td>Calgary Zoo</td>
<td>sandieb@calgaryzoo.com</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Email</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Scott Grindal</td>
<td>ConocoPhillips Canada</td>
<td>Scott.D.Grindal@conocophillips.com</td>
</tr>
<tr>
<td>Scott McNay</td>
<td>Wildlife Infometrics</td>
<td>scott.mcnay@wildlifeinfometrics.com</td>
</tr>
<tr>
<td>Shawn Williams</td>
<td>Nexen Energy</td>
<td>shawn.williams@nexencnoocltd.com</td>
</tr>
<tr>
<td>Simon Geoghegan</td>
<td>MEG Energy</td>
<td>simon.geoghegan@megenergy.com</td>
</tr>
<tr>
<td>Stan Boutin</td>
<td>University of Alberta</td>
<td>stan.boutin@ualberta.ca</td>
</tr>
<tr>
<td>Steve Wilson</td>
<td>EcoLogic Research</td>
<td>steven.wilson@ecologicresearch.ca</td>
</tr>
<tr>
<td>Sue Cotterill</td>
<td>Government of Alberta</td>
<td>Sue.Cotterill@gov.ab.ca</td>
</tr>
<tr>
<td>Susan Kutz</td>
<td>University of Calgary</td>
<td>skutz@ucalgary.ca</td>
</tr>
<tr>
<td>Susan Patey LeDrew</td>
<td>Cenovus Energy Inc.</td>
<td>Susan.PateyLeDrew@cenovus.com</td>
</tr>
<tr>
<td>Tara Russell</td>
<td>Canadian Parks and Wilderness Society (CPAWS)</td>
<td>trussell@cpaws.org</td>
</tr>
<tr>
<td>Tatiana Hayek</td>
<td>Calgary Zoo</td>
<td>TatianaH@calgaryzoo.com</td>
</tr>
<tr>
<td>Troy Hegel</td>
<td>Government of Yukon</td>
<td>Troy.Hegel@gov.yk.ca</td>
</tr>
</tbody>
</table>
Annex 5. Key Points from Plenary Discussions

Current status of boreal caribou by province

- Caution should be taken when interpreting caribou population size estimates; these estimates should not be taken as fact, as specific numbers are not correct. However, the order of magnitude is likely correct and using these rough magnitude estimates to prioritize herds may be warranted.
- Local populations of boreal caribou are thought to be independent, at least for females. The extent of movement of males between populations remains largely unknown. We currently do not have enough information to claim connectivity between local populations.
- For management scope, local populations should be used as they are defined.

Legal context for caribou conservation

- Individual provinces, territories and jurisdictions have different regulatory frameworks within which caribou recovery will be planned and implemented.
- Each jurisdiction has obligations under the federal Species at Risk Act. However, jurisdictions may choose to meet these obligations differently.
- British Columbia, Alberta and the Yukon do not have province/territory-specific species at risk legislation. However, each has Acts and/or endorsed policies under which various activities for caribou recovery (including habitat restoration and protection) are organized, including provincial/territorial Wildlife Acts.
- Parks Canada follows a systems plan, which uses land acquisition as a mechanism to offer protection to caribou and other species. Each national park develops a management plan to outline activities to be conducted over the following 10 years to meet the agency’s vision and mandate.
- The population-management recovery tools examined at this workshop would not require SARA approval. Federal Cabinet would only act on caribou if they decided a jurisdiction was not taking adequate action to protect and recover the species.
- The Canadian Food Inspection Agency (CFIA) may also play a role in caribou recovery—under the Health of Animals Act, permits from CFIA are required to move cervids within Canada in order to prevent the spread of disease (Canadian Council on Animal Care 2003).

Reference:

Table of Contents

1 **CONSERVATION CONTEXT** ... 3

2 **THE WORKSHOP, JANUARY 26 – 28, 2016** ... 4
 2.1 Workshop Goals and Objectives ... 4
 2.2 Workshop Facilitation ... 4
 2.3 Pre-workshop Document ... 6
 2.4 Post-workshop Report .. 6

3 **IUCN GUIDELINES** ... 7
 3.1 IUCN Guidelines for Reintroductions and Other Conservation Translocations 7
 3.2 IUCN Guidelines on the Use of Ex Situ Management for Species Conservation 9

4 **BACKGROUND INFORMATION ON THREATS** ... 10

5 **POPULATION STATUS (OF BOREAL CARIBOU IN WESTERN CANADA)** ... 11

6 **MANAGEMENT ACTIONS/TECHNICAL SOLUTIONS** .. 16
 6.1 Predator and Alternate Prey Control ... 16
 6.2 Wild-to-wild Translocations ... 22
 6.3 Captive-breeding .. 26
 6.4 Captive-rearing (Maternal Penning) .. 30
 6.5 Predator Exclosure Fencing... 33

7 **REFERENCES** ... 36

Appendix 1: Predator and Alternate Prey Control ... 40

Appendix 2: Translocations ... 47

Appendix 3: Captive-rearing (Maternal Penning) ... 54

Appendix 4: Lessons from Other Ungulate Recoveries .. 56
1 CONSERVATION CONTEXT

Boreal populations of woodland caribou (hereafter, ‘boreal caribou’) are declining in most of their Canadian range, and are listed as "Threatened" under the Federal Species At Risk Act (SARA) and in numerous provinces and territories. In 2012, Environment Canada released its Boreal Caribou Recovery Strategy, a national framework to recover boreal caribou across its Canadian range. The Recovery Strategy aims to stop current population declines, increase individual populations to at least 100 animals, and improve habitat condition to at least 65 per cent undisturbed in each range. Provinces and Territories are charged with creating their own SARA-compliant Range Plans and Action Plans to meet the above recovery objectives on the habitat and population elements, respectively.

Unsustainable levels of predation are broadly agreed to be the proximate cause of caribou declines throughout their Canadian range. Landscape-level habitat changes resulting from human and natural disturbances in the boreal forest are thought to ultimately drive this unsustainable predation. Habitat conservation and restoration is a foundational element of caribou recovery, but it is likely that concomitant intensive management techniques will also be required to immediately address low calf survival and recruitment in boreal caribou populations. Successful recovery of boreal caribou populations will likely require the implementation of numerous habitat and population management tools concurrently. The proportion of these tools relative to one another will likely vary by individual caribou local populations (based on local population / range characteristics, demography, landscape condition, socio-political values, etc.).
2 THE WORKSHOP, JANUARY 26 – 28, 2016

This International Union for Conservation of Nature (IUCN) facilitated Workshop is designed to scope the utility of a broad range of population augmentation tools that may be implemented alongside other habitat-based tools. While habitat management is recognized as the foundational element of caribou recovery, workshop participants are reminded that habitat management tools will not be explicitly discussed at this workshop, except in a context where they are used in conjunction with more direct approaches to caribou population increase. Habitat management projects, programs and policies are being addressed and advanced through numerous other avenues, but are not the focus of this Workshop.

2.1 Workshop Goals and Objectives
The overall purpose of this Workshop is to explore the scientific background, conservation utility (including feasibility, practicality and impediments), and social acceptability of population management tools (i.e. conservation translocations, including maternal penning, predator exclosure fencing, wild-to-wild translocations and captive breeding and release) as tools to support the recovery of boreal caribou in Western Canada.

Key objectives for the Workshop are to:

- share management experience, scientific knowledge and social perspectives on caribou conservation breeding/translocation techniques, building on experiences from caribou, reindeer and other ungulate species worldwide;
- assess and evaluate a range of conservation breeding and translocation techniques (scientific research questions, management requirements, risks, population benefits, merits, and limitations) as they apply to boreal caribou in Western Canada;
- discuss potential criteria that could be used to assess and prioritize boreal caribou ranges as to their candidacy for conservation breeding and translocation tools.

Outcomes of this Workshop may be used to identify (for example) funding sources, partner agencies or organizations, delivery models, or proposals for feasibility studies and pilot projects that will allow for continued exploration and proving of these conservation tools, subject to government and regulatory approval in respective jurisdictions.

2.2 Workshop Facilitation
The involvement of key Chairpersons and members of IUCN SSC Specialist Groups in this workshop will draw on a body of global experience that has not yet been applied to boreal caribou conservation and recovery challenges in Alberta or anywhere in Canada. The IUCN is a global organization that supports scientific research, manages field projects all over the world, and brings governments, NGOs, the United

1 Alberta (AB), British Columbia (BC), Northwest Territories (NWT), Saskatchewan (SK), Yukon (YT)
Nations and companies together to develop policy, laws and best practice. The IUCN, being the world’s oldest environmental organization and the largest professional conservation network, is the leading authority on the environment and sustainable development. The Species Survival Commission (SSC) is one of six commissions within the IUCN and comprises a global network of over 8,000 volunteer experts spread between >120 specialist groups, task forces and working groups. The SSC advises on technical aspects of species conservation, as well as organizes action for threatened species.

Key IUCN representatives, all of whom have invaluable experience with conservation breeding, translocations and recovery planning for species at risk, are:

Dr. Mark Stanley Price (Workshop Lead Facilitator)
Chair, IUCN SSC Species Conservation Planning Sub-Committee
Senior Research Fellow, Wildlife Conservation Research Unit, University of Oxford, UK

Dr. Axel Moehrenschlager
Chair, IUCN SSC Reintroduction Specialist Group
Director of Conservation & Science, Calgary Zoological Society

Dr. John Ewen (Workshop Strategic Decision Making Expert)
Member, IUCN SSC Reintroduction Specialist Group
Chair, Hīhi Recovery Group, Department of Conservation, New Zealand
Honorary Senior Research Associate, University College London
Research Fellow, Institute of Zoology, Zoological Society of London

Dr. Bill McShea
Co-chair, IUCN SSC Deer Specialist Group
Research Ecologist, Conservation Ecology Center, Smithsonian Conservation Biology Institute

Given the complexity of situations and the extent to which threat factors interact, decisions on best solutions will require at least qualitative structured decision-making. The workshop process will assume sound working knowledge of the pre-workshop document. Its headline conclusions will be discussed with focus on their generality to the range of situations faced by boreal caribou. This should lead to preliminary assessments of management approaches of most promise. Through a mix of plenary
sessions and working groups, probably focusing on sets of caribou ranges, ‘best chance’ management interventions will be explored. By the end of the workshop, there should be a plan to explore the feasibility of management techniques that could be implemented at specific sites.

2.3 Pre-workshop Document

This pre-workshop document has been prepared to ensure participants have a common understanding of the pertinent topics prior to the Workshop so that the group may focus on moving forward with discussion of potential population augmentation tools during the Workshop. Specifically, this document presents relevant information on:

- IUCN guidelines for reintroduction and other conservation translocations;
- status of boreal caribou populations in western Canada;
- summary of caribou population augmentation tools previously (or presently) implemented in various jurisdictions;
- summary of key translocation (including fencing) programs for other ungulates worldwide to examine benefits and challenges associated with various techniques.

The information presented in this document is based on an extensive review of publicly-available material. In the interest of brevity, only key information is presented within the document; additional details are found in the accompanying appendices.

2.4 Post-workshop Report

Dr. Mark Stanley Price will lead the development, with support from Calgary Zoo researchers, of a post-workshop report (targeted availability the end of May 2016). The post-workshop report will corroborate areas and techniques that may produce positive conservation results based on workshop outcomes and a structured decision making process. This report may include:

- a determination of potential local populations where conservation translocations could contribute to population stabilization or recovery outcomes;
- key parameters or criteria to be addressed in area- and method-specific feasibility studies; and
- identification of individuals/organizations/funding sources that could/would collaborate in specific feasibility studies or pilot assessments.
3 IUCN GUIDELINES

The International Union for Conservation of Nature (IUCN) has drawn upon its extensive collective knowledge base and decades of experience to develop guidelines for translocations and ex situ management as tools for species conservation. These guidelines were strategically designed to be applicable to a range of different species and situations. As conservation translocations and captive-breeding are key tools of interest in this workshop, we rely heavily upon the knowledge and advice contained within these guidelines, as well as that of experts present at the workshop.

3.1 IUCN Guidelines for Reintroductions and Other Conservation Translocations

* All information contained within this section is summarized from IUCN/SSC 2013.

The IUCN’s Reintroduction Specialist Group (RSG) and Invasive Species Specialist Group (ISSG) developed the ‘Guidelines for Reintroductions and Other Conservation Translocations’ (hereafter ‘IUCN translocation guidelines’) to prepare and advise conservationists on how to appropriately integrate translocations into species conservation strategies. We recommend that any program intending to incorporate translocations should use or at least reference the IUCN translocation guidelines to responsibly and effectively plan and implement conservation translocations.

The IUCN translocation guidelines define translocation as ‘the human-mediated movement of living organisms from one area, with release in another’.

A ‘conservation translocation’ is an intentional translocation that aims to generate a measurable conservation benefit for a population, species or ecosystem. Individuals to be translocated can be sourced from either wild (i.e. wild-to-wild translocation) or captive populations (i.e. captive breeding and release).

Types of conservation translocations are differentiated depending upon whether animals are released inside or outside of the species’ indigenous range, and on the overall purpose of the translocation. Translocation types most relevant for caribou conservation are ‘population restoration’ translocations, those that occur within a species’ indigenous range, of which there are two types:

1. Reinforcement: animals are released into an existing population to increase its viability, and

2. Reintroduction: a population no longer exists within the area and releases aim to re-establish a viable population.

In comparison, ‘conservation introduction’ translocations intentionally move and release a species outside of its indigenous range, and are conducted for two purposes:

1. Assisted colonization, to ‘avoid extinction of populations of the focal species’, and

2. Ecological replacement, for the species to ‘perform a specific ecological function’.

The IUCN Guidelines recommend a number of steps that should be followed when considering, designing, implementing and following-up with any translocation (Figure 1).
Figure 1: ‘The conservation translocation cycle’ (from IUCN 2013)
3.2 IUCN Guidelines on the Use of Ex Situ Management for Species Conservation

* All information contained within this section is summarized from IUCN/SSC 2014.

The IUCN Species Survival Commission (SSC) developed the ‘IUCN Species Survival Commission Guidelines on the Use of Ex Situ Management for Species Conservation’ (hereafter ‘IUCN ex situ guidelines’) to provide guidance on whether inclusion of ex situ management in a species conservation strategy is justified to address conservation goals/objectives. These IUCN ex situ guidelines are intended to be complementary to the above IUCN translocation guidelines.

The term ‘ex situ’ can encompass a range of management techniques that fall along a continuum of management intensity. The IUCN ex situ guidelines define ex situ as ‘conditions under which individuals are spatially restricted with respect to their natural spatial patterns or those of their progeny, are removed from many of their natural ecological processes, and are managed on some level by humans’.

The guidelines outline the potential utility of ex situ management to:

- ‘address the causes of primary threats’,
- ‘offset the effects of threats’,
- ‘buy time’ (by establishing an ‘insurance’ population), and
- ‘restore wild populations’ (through translocations).

Ex situ management should be evaluated within the context of overall objectives for a species’ conservation. The SSC outlines a 5-step logical decision-making process for evaluating whether ex situ management is appropriate to include within a species’ conservation strategy:

1. ‘Compile a status review of the species, including a threat analysis.’
2. ‘Define the role(s) that ex situ management will play in the overall conservation of the species.’
3. ‘Determine the characteristics and dimensions of the ex situ population needed to fulfil the identified conservation role(s).’
4. ‘Define the resource and expertise needed for the ex situ management programme to meet its role(s) and appraise the feasibility and risks.’
5. ‘Make a decision that is informed (i.e. uses the information gathered above) and transparent (i.e. demonstrates how and why the decision was taken).’

Though appropriate caution must be taken when considering ex situ management as a conservation tool, waiting until a species is very near extinction reduces the chance that such an approach will be successful. If a decision is made to proceed with an ex situ management program, a number of other steps must be taken to ensure the program is conducted responsibly and effectively. These include relying upon the IUCN translocation guidelines, as well as other appropriate guidelines.
Closely examining and understanding threats to a species’ persistence (as well as its classification, life history, ecology) is a critical step in any responsible and effective translocation program (IUCN/SSC 2013).

Predation is recognized as the predominant proximate threat to boreal caribou populations throughout their Canadian range (ASRD and ACA 2010, Festa-Bianchet et al. 2011, EC 2012). Wolves appear to be a major predator of caribou (e.g., Stuart-Smith et al. 1997, Rettie and Messier 1998); however, black bears are increasingly acknowledged as important predators of caribou, especially caribou calves (e.g., Latham et al. 2011a, Leclerc et al. 2014). In addition, other species such as lynx, coyote and golden eagle have been documented preying on caribou calves; however their impact as population limiting factors is not known.

Unsustainable predation rates are thought to ultimately stem, at least in part, from habitat fragmentation and alteration resulting from industrial and agricultural land use as well as natural disturbances (particularly forest fires; Thomas and Gray 2002, EC 2012). The relationship between disturbance and increased predation on caribou may be explained by 3 major mechanisms (ASRD and ACA 2010):

- disturbance drives increases in densities of alternate prey and in turn, predators,
- disturbance compromises caribou’s ability to spatially separate themselves from alternate prey and predators, and/or
- disturbance increases the occurrence, movement and hunting efficiency of predators on caribou.

As caribou require large, continuous tracts of suitable habitat, habitat fragmentation affects caribou populations by reducing both food and space necessary for caribou to adequately meet their life requisites (Badiou et al. 2011). Cumulative disturbance from both human and natural sources may reduce functional habitat (reduced use of suitable habitat due to avoidance behavior or increased mortality risk) for caribou more than direct habitat loss alone, which may ultimately influence caribou population dynamics (Weclaw and Hudson 2004, Sorensen et al. 2008, Johnson et al. 2015). Therefore, **habitat alteration is regarded as the ultimate threat to boreal caribou** (Badiou et al. 2011, EC 2012).

Additional factors, such as disease and parasites, hunting, forage quantity and quality, and stochastic events may affect caribou populations to differing extents (EC 2012). Although specific consequences remain uncertain, climate change is also predicted to have potentially serious impacts on caribou populations through both direct and indirect mechanisms (Thomas and Gray 2002, Hummel and Ray 2008, Vors and Boyce 2009, EC 2011, Vors 2013, Dawe et al. 2014).

Ultimately, many of these threats likely act in combination to have cumulative impacts on caribou that are not evident when examining individual threats separately (Weclaw and Hudson 2004, Culling and Cichowski 2010, EC 2012).
5 POPULATION STATUS (OF BOREAL CARIBOU IN WESTERN CANADA)

Nationally, the boreal population of woodland caribou is listed as Threatened under Schedule 1 of SARA due to widespread population declines and increasing threats posed by human activities, which inform a projected population decline of greater than 30% over 3 generations (“20 years; EC 2012, COSEWIC 2014). Environment Canada (2012) has concluded that the recovery of all boreal caribou local populations is both technically and biologically feasible, and has set a recovery goal to “achieve self-sustaining local populations in all boreal caribou ranges throughout their current distribution in Canada, to the extent possible”.

Conservation status for boreal caribou in Western Canadian provinces and territories are:

- **Alberta**: Threatened under the Alberta Wildlife Act
- **British Columbia**: On the provincial Red List and a priority 1 species under goal 3 of the BC Conservation Framework
- **Saskatchewan**: Not listed; though a status report released in 2000 recommended listing woodland caribou as threatened (Government of SK 2013a)
- **Northwest Territories**: Threatened under the Species at Risk (NWT) Act
- **Yukon**: Not listed, but may be irrelevant for boreal caribou (see below)

Global conservation status:

- **IUCN**: Least Concern (*Rangifer tarandus*)
- **NatureServe**: G5TNR [caribou globally secure (G5), but boreal population not yet ranked (TNR)]

Of 51 boreal caribou local populations in Canada, 14 are considered “self-sustaining”, 26 are “not self-sustaining”, 10 are “as likely as not self-sustaining” and 1 is “unknown” (Figure 2), wherein self-sustainability refers to the ability of a range to support the local population and depends upon the amount and quality of suitable habitat (largely determined by the extent of disturbance; EC 2012). Of 37 local populations for which data on population trends is available, 81% are declining (COSEWIC 2014).

2 Environment Canada used a habitat-based Bayesian decision support system to predict whether the extent of disturbance within a given caribou range would support a viable local population (EC 2011, 2012). These predictions were supported by results of an empirical, long-term, multi-population monitoring study in Alberta (Hervieux et al. 2013).
Caribou population trends are likely driven by both adult female and calf survival rate rather than just one vital rate (Hervieux et al. 2013). Assuming an average adult boreal caribou female survival rate of 85%, Environment Canada (2008) suggested that a recruitment rate of 15% female calves into the total population is needed to achieve population stability; assuming a number of demographic variables, calf recruitment must be at least 28.9 calves:100 females to achieve this. Using a non-spatial PVA, Environment Canada (2008) also estimated that populations numbering greater than 300 animals can “persist indefinitely when range conditions support average adult female and calf survival”, populations numbering 50 - 300 animals are vulnerable to stochastic events and are at risk of ‘quasi-extinction’, and populations of fewer than 50 individuals face particularly high risk of extinction.

We compiled published data on estimated population sizes and trends (Figure 3) and demographic information (adult survival and calf recruitment; Table 1). Additional information on boreal caribou within SK and NWT/YT (which are poorly represented in the figures/tables) is also included.
Figure 3: Estimated population sizes and trends for recognized boreal caribou local populations in BC and AB (note: some are cross-border). Numbers indicate total estimated population size; Letters indicate population trend: D = Decreasing, S = Stable, U = Unknown. ESAR = East Side Athabasca River, WSAR = West Side Athabasca River. Data is from EC 2012 (for population size: lower estimate), except for AB population trend information updated from Hervieux et al. (2013). EC 2012 population count for Chinchaga includes the BC portion. Note: BC population size information from Culling and Culling 2014 (minimum late winter population count 2014): Maxhamish = 102, Calendar = 79, Snake-Sahtaneh = 241, Parker = 40, Prophet = 37, Fort Nelson = 10 (an additional area of habitat outside of defined ranges for which a growing body of evidence supports formal inclusion in future revisions of BC’s boreal caribou range map); Chinchaga and Chinchaga RRA combined count for BC = 214. Estimates for ranges in SK and NWT/YT have not been included due to lack of data in EC 2012 and little to no updated information available since EC 2012. In addition, data may potentially be misinterpreted when comparing estimates in BC and AB, where herds within small geographical areas have been distinguished, to SK and NWT/YT, where boreal caribou are considered to be dispersed over a much larger area of land (e.g. Estimated 6,500 animals total within NWT/YT, EC 2012). Available information on population size and trends for SK and NTW/YT is detailed below. Note: As of the 2012 Recovery Strategy, all local populations in AB and SK were considered ‘not self-sustaining’.
Table 1: Demographic information for Western boreal caribou local populations

<table>
<thead>
<tr>
<th>Recognized Population</th>
<th>Range Identification</th>
<th>Recruitment (9 - 11 months)</th>
<th>Annual Adult Female Survival</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxhamish</td>
<td>BC1</td>
<td>10 calves: 100 females²</td>
<td>0.72 (annual finite avg. all populations³)</td>
<td>March 2014 (recruitment); April May 2013 – April 2014 (female survival)</td>
<td>Culling and Culling (2014)</td>
</tr>
<tr>
<td>Calendar</td>
<td>BC2</td>
<td>13 calves:100 females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake-Sahtaneh</td>
<td>BC3</td>
<td>11 calves:100 females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker</td>
<td>BC4</td>
<td>32 calves:100 females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophet</td>
<td>BC5</td>
<td>10 calves:100 females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Nelson⁴</td>
<td>n/a</td>
<td>0 calves:100 females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinchaga</td>
<td>AB1</td>
<td>13.4 calves:100 females⁵ (AB)</td>
<td>0.831</td>
<td>1994 - 2012 (10 years, averages)</td>
<td>Hervieux et al. (2013)</td>
</tr>
<tr>
<td>Bistcho</td>
<td>AB2</td>
<td>17.1 calves:100 females</td>
<td>0.776</td>
<td>1994 - 2012 (5 years, averages)</td>
<td></td>
</tr>
<tr>
<td>Yates</td>
<td>AB3</td>
<td>20.6 calves:100 females</td>
<td>0.907</td>
<td>1994 - 2012 (5 years, averages)</td>
<td></td>
</tr>
<tr>
<td>Caribou Mountains</td>
<td>AB4</td>
<td>14.4 calves:100 females</td>
<td>0.858</td>
<td>1994 - 2012 (17 years, averages)</td>
<td></td>
</tr>
<tr>
<td>Little Smoky</td>
<td>AB5</td>
<td>15.3 calves:100 females</td>
<td>0.901</td>
<td>1994 - 2012 (13 years)</td>
<td></td>
</tr>
<tr>
<td>Red Earth</td>
<td>AB6</td>
<td>15.7 calves:100 females</td>
<td>0.819</td>
<td>1994 - 2012 (15 years, averages)</td>
<td></td>
</tr>
<tr>
<td>West Side Athabasca River</td>
<td>AB7</td>
<td>19.8 calves:100 females</td>
<td>0.849</td>
<td>1994 - 2012 (18 years)</td>
<td></td>
</tr>
<tr>
<td>Richardson</td>
<td>AB8</td>
<td>17.9 calves:100 females</td>
<td>0.903</td>
<td>1994 - 2012 (3 years, averages)</td>
<td></td>
</tr>
<tr>
<td>East Side Athabasca River</td>
<td>AB9</td>
<td>14.7 calves:100 females</td>
<td>0.853</td>
<td>1994 - 2012 (17 years, averages)</td>
<td></td>
</tr>
<tr>
<td>Cold Lake</td>
<td>AB10</td>
<td>10 calves: 100 females (AB)</td>
<td>0.814 (AB), 0.866 (SK)</td>
<td>1994 - 2012 (12 years, averages)</td>
<td>Studies cited in SRC (2012)</td>
</tr>
<tr>
<td>Nipisi</td>
<td>AB11</td>
<td>n/a⁶</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Slave Lake</td>
<td>AB12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>South Slave/SE Dehcho</td>
<td></td>
<td>23 calves:100 females (South Slave)</td>
<td>0.859 (South Slave) 0.76 (Dehcho-south)</td>
<td>2003/04 – 2009/10 (South Slave) 2005/06 – 2009/10 (Dehcho-south)</td>
<td>Studies cited in SRC (2012)</td>
</tr>
<tr>
<td>Dehcho (N/SW)</td>
<td></td>
<td>34 calves:100 females (Dehcho-south)</td>
<td>0.794 (Dehcho-south)</td>
<td>2005/06 – 2009/10</td>
<td></td>
</tr>
<tr>
<td>North Slave</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sahtu</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Inuvialuit</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Gwich’in</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Little data available on SK populations. See section below for more information.

¹ EC 2012, except for NWT which are from COSEWIC 2011
² Avg. (March 2013, March 2014): 19c:100F BC1, 24c:100F BC2, 17.5c:100F BC3, 18c:100F BC4, 14.5c:100F BC5
³ Including Chinchaga
⁴ Additional area of habitat outside of defined ranges
⁵ Milligan and Ethithun cores and Chinchaga RRA (combined) for BC: 10c:100F March 2014, 14c:100F March 2013 (Culling and Culling 2014)
⁶ Data not available
Supplementary Information on Population Status for SK and NWT/YT

Saskatchewan
Research on boreal caribou in SK only began as of the late 1980s (Thomas and Gray 2002) and there remains a general lack of information concerning boreal caribou in SK to date (EC 2012, Government of SK 2013a). Research conducted in central SK in the 1990s estimated an average adult female survival rate of 84% and average calf recruitment of 28 calves:100 females (Rettie and Messier 1998). Between 2004 and 2008, radiocollared caribou in the Prince Albert Greater Ecosystem (PAGE) experienced an average annual adult female survival rate of 73% (Arsenault and Manseau 2011).

As of the 2012 Recovery Strategy, population size estimates and trends were unavailable for both of the two conservation units (low certainty) within SK (EC 2012). One range was considered ‘as likely as not self-sustaining’ (based on given habitat conditions) and the other ‘unknown’ due to high fire and low anthropogenic disturbance factors, which could not be modeled (EC 2012). As of 2000, there were an estimated 4,300 caribou in SK (Government of SK 2013b).

Northwest Territories and Yukon
Boreal caribou only just enter the northeastern corner of the Peel watershed within the Yukon—some caribou from the NWT MacKenzie core study area move into the Yukon during certain seasons (Nagy et al. 2004). Therefore, the Yukon Territory may have limited impact upon boreal caribou management (R. Farnell pers. comm. 2015).

As boreal caribou in NWT do not appear to form cohesive herds, one continuous range is defined for boreal caribou in NWT (and YT; EC 2012). As of the 2012 Recovery Strategy, this NWT ‘improved conservation unit’ (medium certainty) was estimated to hold 6,500 animals and was considered ‘self-sustaining’ (EC 2012).

Trends for the entire NWT population are not known, but estimated growth rates for specific regions indicate that numbers were increasing in the Gwich’in study areas (Nagy 2011), decreasing in the Dehcho and Cameron Hills study areas (Larter and Allaire 2010, Kelly and Cox 2011) and decreasing to stable in the South Slave study area (Kelly and Cox 2011). However, these results should be interpreted within the context of abundance, as numbers vary between study areas—53% of NWT boreal caribou are found in areas where numbers are declining or stable (Dehcho and South Slave regions), 8% in areas where numbers are increasing (Gwich’in region) and 39% in areas where trends are unknown (Inuvialuit, Sahtu and North Slave regions; SRC 2012).
6 MANAGEMENT ACTIONS/TECHNICAL SOLUTIONS

While habitat management will be a key element of caribou recovery going forward, intensive population management will likely also be required for most boreal caribou populations in Western Canada in order to address both proximate/symptomatic (predation) and ultimate/systemic (habitat change) threats to boreal caribou. The range of population augmentation or management tools addressed in this Workshop include:

- predator and alternate prey control (including lethal and non-lethal methods),
- wild-to-wild translocations,
- captive breeding and release,
- captive rearing and release, and
- predator exclosure fencing.

For each of these tools, a body of scientific and technical evidence, practical experience, and logistic and cost considerations can be integrated into a structured decision making process to assess the suitability of individual methods for different caribou ranges and jurisdictions. Below we present a summary of these population management tools in the context of some relevant key considerations.

6.1 Predator and Alternate Prey Control

We summarized 12 predator control programs conducted within North American caribou ranges from 1967 to current-day (Appendix 1). We only included predator control programs in which caribou were the (or one of the) ungulate species targeted for recovery; a number of other programs have been conducted to address moose declines (see NRC 1997 and Russell 2010 for reviews).

6.1.1 Predator Control

Overall, in areas where predators are abundant and are the primary cause of mortality, sufficiently intense reductions in predators have been associated with caribou population growth, which appear to have been driven mainly by improved calf recruitment (e.g. Gasaway et al. 1983, Boertje et al. 1996, Bergerud and Elliot 1998, Hayes et al. 2003).

In a review of wolf management programs in Alaska, YT, BC, AB and NWT, Russell (2010) concluded that wolf control is effective if:

- wolf predation is a limiting factor to ungulate populations,
- predators can be reduced to sufficient levels (65 – 80% of pre-control wolf levels),
- reductions are conducted until a population goal is reached or for at least 4 years,
- predators are reduced over an adequate area (at least 10,000 km²),
- habitat is not limiting caribou population growth,
- hunting of caribou is diminished (ideally banned).
a) **Have caribou survival and/or recruitment responded to past predator reductions?**

Most wolf control programs we examined saw improvements in calf recruitment and some were also associated with increases in adult survival, but the statistical significance of these observations varied across studies that tested for significance. The highest recruitment rates recorded during wolf control were an average of 42 calves:100 females (in October) for the Aishihik northern mountain caribou herd in the Yukon (when the wolf population was reduced by 69-83% below 1992 pre-treatment densities between 1993-1997; Hayes et al. 2003), and 39-65 calves:100 females (in September/October, 1976 - 1981) for the Delta barren-ground caribou herd in Alaska (when the wolf population was reduced by 55 – 80% below pre-control numbers between 1976 – 1981; Boertje et al. 1996). However, increases in recruitment observed during wolf control within the Little Smoky boreal caribou population (mean recruitment = 12 calves:100 females pre-treatment, 19 calves:100 females post-treatment) were weaker than those observed in the Yukon (Hervieux et al. 2014).

b) **Have caribou populations responded following past predator reductions?**

Many caribou populations (though not all) appear to have responded to decreases in wolf densities, often beginning to grow in numbers the year of or immediately following initial reductions (e.g. Gasaway et al. 1983, Boertje et al. 1996, Bergerud and Elliot 1998, Hayes et al. 2003). The highest caribou population growth rates recorded were during wolf control in the Yukon and Alaska—the Finlayson northern mountain caribou herd in the Yukon increased at a finite rate of increase of $\lambda = 1.18$ (1986 – 1990) when the wolf population was reduced by 42% from the original population size in 1983 and by 83-86% from the original population size from 1984 to 1989 (Yukon Department of Environment unpublished data); the Delta barren-ground caribou herd in Alaska increased by $\lambda = 1.16$ over 7 years of wolf control (70-80% removal from the pre-control population during the first 5 years, 55-60% during the last 2 years; Boertje et al. 1996); the Aishihik northern mountain caribou population in the Yukon increased by $\lambda = 1.15$ over 5 years of wolf control (69 – 83% removal from the pre-treatment density; Hayes et al. 2003, Farnell 2009). However, though the annual rate of population change of the Little Smoky boreal caribou population increased 4.6% between pre- (2000 – 2005/06) and post- (2005/06 – 2012) control periods, wolf control (~45% removal of mid-winter wolf population each year) did not generate caribou population growth (λ post wolf control = 0.99; Hervieux et al. 2014).

c) **How intensive must removal be to have an impact on caribou?**

Relationships (i.e. linear or otherwise) between wolf reductions and caribou responses have not been established. However, it appears likely that at least a 60% and ideally an 80% reduction (threshold) in a wolf population is required to generate responses in caribou survival, recruitment and/or population size. In a review of a number of wolf control programs, Adams (2010 in Russell 2010) assessed 3 programs as ‘successful’ (i.e. short term goals for ungulate populations were met), all of which removed 69 – 77% of wolves for 6 – 7 years (moose and caribou populations grew 10 – 15% per year).

When planning predator control, the ecology of the predator species, including its movement, is an important consideration. If predators are highly mobile and predator control occurs only on a local scale determined by small caribou ranges, predator movement into the target area may undermine control efforts (Mosnier et al. 2008).
d) Is predator control sustainable over the long-term?

All reduction projects we examined in which wolf densities were measured reported rapid recovery of wolf populations following control (e.g. Boertje et al. 1996, Bergerud and Elliot 1998, Hayes and Harestad 2000, Hervieux et al. 2014). Perhaps accordingly, caribou populations have been found to decline after wolf control has ended, though this may occur after a lag period (e.g. Boertje et al. 1996, Yukon Department of Environment unpublished data).

These findings suggest that predator control, if used alone, must be continuously conducted to maintain low wolf numbers (Thomas and Gray 2002, Festa-Bianchet et al. 2011). Therefore, while it may be an effective short-term option to protect caribou herds while other responses are being developed or in tandem with other actions (e.g. translocations or maternal penning), habitat management will be required over the long term.

e) Logistics - methods used to reduce predator populations and costs

i. Lethal Control

The majority of wolf reduction programs have used annual aerial control (shooting from helicopters) to successfully reduce wolf populations (e.g. Boertje et al. 1996, Bergerud and Elliot 1986, 1998, Hayes et al. 2003, Hervieux et al. 2014). Biologists from the BC Mountain Caribou Science Team and Ministry of Environment strongly recommend aerial control as the most humane and cost-effective strategy (Wilson 2009). Wilson (2009) provides detailed recommendations on predator-prey management (including cougars, bears) to support mountain caribou recovery in BC.

Costs associated with predator control programs will depend upon various factors, including the species, control area size and location/accessibility, control method chosen, intensity of control, measured effectiveness of control, duration of the control program and associated monitoring. Wolf control within the Little Smoky boreal caribou range in Alberta cost approximately $35 CAD/km² per year (D. Hervieux pers. comm. in Schneider et al. 2010). Based on this value, Schneider et al. (2010) estimated that costs of conducting wolf control programs within 12 woodland caribou herds for 0 – 16 years (depending upon the herd) in northern Alberta would range between $0 – 8.38 million CAD (average $3.59 million CAD) in total³.

³ The length of time wolf control was conducted depended upon how long it was needed to recover each herd. Wolf control was applied when caribou density was < 0.045 animals/km² and stopped when caribou density was > 0.06 animals/km².
ii. Non-lethal control methods

Surgical sterilization

Surgical sterilization of dominant wolf pairs has been tried in combination with lethal control methods in the Yukon (Hayes et al. 2003, Farnell 2009) and BC (Hayes 2013), and with translocation of subordinate individuals in Alaska (Boertje and Gardner 2003; see Appendix 1). **Sterilization has been found to successfully stop reproduction and reduce wolf population growth** (Boertje and Gardner 2003, Hayes et al. 2003, Hayes 2013), while not affecting wolf territoriality, pair bonding or survival (Farnell 2009, Hayes 2013).

Sterilization treatment in combination with other control measures has been associated with concurrent increases in caribou populations (Boertje and Gardner 2003, Hayes et al. 2003, Farnell 2009, Hayes 2013). However, to our knowledge, sterilization has never been implemented alone (i.e. not without other control measures).

Reproductive inhibitors

There has been some research and experimentation in using reproductive inhibitors, either orally or through vaccines, to control reproduction in a number of different species (Fagerstone et al. 2010, Massei and Cowan 2014, Cohn and Kirkpatrick 2015). For example, Bisldamine (steroid) was administered to wolves in ground meat daily and seemed to suppress spermatogenesis without a change to mating behaviour (Asa et al. 1996). However, to our knowledge, experimentation with reproductive inhibitors has not yet gone past the testing phase for wolves.

Various technical, biological, economic and legal challenges arise when considering widespread application of any reproductive inhibitor, whether administered orally, through implants or vaccines (Fagerstone et al. 2010). For example, steroids would require repetitive applications as they are only effective over a short period, some persist within food chains and they can have negative health effects in some animals (Fagerstone et al. 2010). **PZP has been found to disrupt estrous cycles in deer, which could alter the timing of births** (Fagerstone et al. 2010). Amongst the biggest challenges may be obtaining regulatory approval. Furthermore, many agents are not species-specific and may thus affect non-target animals. Finally, some treatments may change the target species’ behavior, such as mating or aggressiveness.

Reproductive inhibitors must also be biologically practical to use. The relative efficiency, as measured by the percent decline in population size relative to the number of animals sterilized or removed, of using contraceptive techniques as compared to lethal control is predicted to depend on the species’ age of first reproduction and average adult survival rate (Dolbeer 1998). For animals that first breed at the age of 1 or 2, lethal control is predicted to be more efficient than contraception when adult survival is higher than 0.56 and 0.23, respectively (Dolbeer 1998). Lethal control will always be more efficient, regardless of adult survival, for animals that first breed at the age of 3 or older (Dolbeer 1998).
Finally, using reproductive inhibitors must be economically practical and socially acceptable. The cost of their implementation will vary depending upon costs associated with development and regulatory approval processes, as well as actual treatment, which will involve human and technical resources. Generally, reproductive inhibitors are thought to be more accepted by the public than other methods of control, particularly lethal control.

Discretionary feeding of predators

Providing predators with alternative food sources (‘discretionary feeding’) was attempted in 4 cases in Alaska between 1985 and 1996 as a non-lethal method of predator control (NRC 1997, Russell 2010). However, results from the four cases were mixed. Boertje et al. (1995 in Russell 2010) highlight the high time and cost requirements of discretionary feeding and rank this technique as ‘low’ for cost-effectiveness.

6.1.2 Alternate Prey Control

Although the utility of alternate prey control in caribou conservation has been demonstrated theoretically (e.g. Weclaw and Hudson 2004), to our knowledge there has only been one study to date that has examined the effects of reducing moose on caribou populations (Serrouya 2013; though see Steenweg 2011). Some evidence also suggests that in addition to moose, white-tailed deer should be included as a priority species in prey reduction programs for caribou management (Latham et al. 2011b).

a) Is managing hunter harvests effective in reducing target prey populations?

Serrouya (2013) monitored moose, wolf and caribou populations following a BC government policy that started in 2003 and increased hunter harvest of moose 10-fold between 2003 and 2005 (lower harvest level 2005 - 2010) in 3 southern mountain caribou ranges. **Overall, the moose population declined by 71% from 2003 to 2011** (1.58 moose/km² to 0.44 moose/km²), but data suggested the actual decline began 1 – 2 years after increased moose harvest started in Autumn 2003 (Serrouya 2013). The moose population decline was thought to have been stimulated by hunting, but ultimately driven by depensatory predation by wolves (Serrouya 2013).

Steenweg (2011) also investigated the effects of reduced moose populations within a BC southern mountain caribou range. Increased moose hunting quotas within the Hart Ranges southern mountain caribou range began in 2006 and ultimately led to a decline from ~3,000 moose (1.18/km²) in 2005 to ~1,818 moose (0.73/km²) in 2008/09, a 50 – 60% reduction overall (Steenweg 2011).

b) Have alternate prey reductions influenced predator numbers?

The combined results of Serrouya (2013) and Steenweg’s (2011) studies suggest that moose reductions may lead to a decrease in wolf numbers, likely due to wolf dispersal (as opposed to mortality). However, there is likely a time lag (possibly 2 – 3 years) between moose reductions and wolf population response.
c) Have alternate prey control programs affected caribou populations?
In Serrouya’s (2013) study, the resulting effects of moose reductions on caribou populations were mixed (Serrouya 2013). The larger subpopulation within the treatment area, Columbia North, increased following moose reductions, while the smaller subpopulations, Columbia South and Frisby-Queest, continued to decline. Despite mixed findings, Serrouya (2013) warns against disregarding alternate prey control as an option if implemented alongside other management tools that address proximate and ultimate limiting factors.

d) How intensive must removal of alternate prey be to have an impact on caribou populations?
The required intensity of alternate prey reductions to generate responses in wolf populations remain largely unknown. Bergerud (2007) suggested that moose densities > 100/1000km² can support wolf densities greater than the maximum limit (6.5/1000km²) required for caribou population stability. Fuller’s (1989) equation estimates that moose densities must be < 300 moose/1000km² to limit wolf densities to <6.5 wolves/1000km² and < 50 moose/1000km² to limit wolf densities to < 1.5 wolves/1000 km² (Wilson 2009). Wilson (2009) suggested that moose densities be reduced (under a ‘natural disturbance regime’) to 50 – 300 moose/1000 km² for mountain caribou recovery, depending on the status of the target caribou population.
6.2 Wild-to-wild Translocations

We summarized information from 57 caribou and reindeer translocations to Canada (40), the USA (11) and abroad (6) (Appendix 2); in some cases, caribou were released to a given location on more than one occasion and summarization of results from 22 introductions to Newfoundland are presented from Bergerud and Mercer (1989) rather than summarized individually. Caribou have been previously translocated for purposes other than conservation, which were also included.

Of the translocations examined, woodland caribou were used as source populations in 37 cases (65%) and reindeer or barren-ground caribou in 20 (35%). Boreal caribou were reintroduced to Charlevoix, Quebec in the early-1970s and to the Lake Superior region in Ontario in the 1980s. Boreal caribou from Saskatchewan and Quebec may also have been used in earlier reintroductions to Minnesota and Nova Scotia in the 1930s and 1960s, respectively. To our knowledge, translocations of boreal caribou in Western Canada have never been attempted, but several translocations of mountain caribou have occurred in British Columbia since the late 1980s.

a) How successful have previous translocations been overall?
It is difficult to define what constitutes a ‘successful’ translocation as objectives are rarely identified and there is no set end date (IUCN/SSC 2013). Objectives may include demographic targets (such as survival, reproduction and/or abundance), behavioral responses, ecological changes, genetic diversity and disease infection rates (IUCN/SSC 2013).

We did not attempt to state whether translocations were successful in establishing viable populations, but of the 57 translocations examined, 37 populations (65%) were still present or presumed present as of the most recent information, 17 (30%) were extinct and the status of 3 (5%) was unknown. We separately examined 38 translocations within North America (including the 22 Newfoundland introductions reviewed in Bergerud and Mercer 1989) that have occurred since 1960 and in which caribou are not ranched. Of these translocations, 28 populations (74%) were still present as of the most recent information, whereas 10 (26%) were extinct or presumed extinct.

Of 37 caribou translocations in Canada and the USA reviewed by Kinley (2009), in which 15 – 146 caribou were released, 67% were successful in establishing new herds or reinforcing existing herds. An earlier review by Bergerud and Mercer (1989) summarized 33 translocations of caribou in eastern North America between 1924 and 1985. Of these, 19 (58%) were deemed to be successful in establishing viable populations by the time of publication (Bergerud and Mercer 1989).

b) What are some factors that may affect translocation success?

iii. Low predation risk
Bergerud and Mercer (1989) concluded that caribou translocations will fail in areas where wolf density is greater than 10 wolves/1000 km². In 10 translocations reviewed by Kinley (2010) into areas with predators (including wolves and cougars) 6 reintroductions or reinforcements were successful, 1 reintroduction (of 6 animals) and 1 introduction (of 8 animals) were unsuccessful (likely due to wolf
predation) and the long-term viability of 2 reintroductions was still undetermined, although they appeared to have been successful over the short-term.

It appears that definitive statements concerning the extent to which predation influences caribou translocation success cannot be made. However, given knowledge of the substantial threat predation poses to existing boreal caribou herds and outcomes of previous translocations, predation likely poses a significant risk to released caribou.

iv. White-tailed deer and disease
As carriers of *Parelaphostrongylus tenuis*, meningeal worm, white-tailed deer have been implicated in the failure of various caribou translocations in eastern North America (Bergerud and Mercer 1989). Of the introductions reviewed by Bergerud and Mercer (1989), all those released into ranges with high densities of white-tailed deer infected with meningeal worm failed and the authors thus concluded that caribou translocation cannot succeed in areas where white-tailed deer carry *P. tenuis*.

Translocated animals may also endanger an existing resident population by bringing new diseases to a region (IUCN/SSC 2013). Therefore, a comprehensive assessment of disease is a key component of any translocation plan (IUCN 2013) and all individuals to be translocated must be screened for potential disease and parasites prior to release.

v. Characteristics of source populations
Woodland caribou exhibit locally adapted behaviors, so similarities/differences in characteristics between source and target populations stand to affect a translocation’s probability of success. Ideally, translocated caribou would exhibit similar behavioural characteristics, have experience with comparable species and densities of predators, and make use of similar seasonal habitats as the target population. However, translocations of caribou to the South Selkirks mountain caribou herd from both mountain and northern ecotype source populations indicated that translocations involving different ecotypes may be feasible (Compton et al. 1995).

vi. Size and composition of release groups
Generally, the probability that a translocation will succeed increases with the number of animals released (Griffith et al. 1989, Wolf et al. 1998, Forsyth and Duncan 2001). However, for large ungulate species, some evidence suggests that there exists an asymptote at approximately 20 – 40 animals released at one time (Griffith et al. 1989, Wolf et al. 1998, Forsyth et al. 2001).

Kinley (2010) recommends including at least 3 bulls (>2.5 years old) in every group of 20 caribou translocated to promote breeding and as many younger females (but >1.5 years old) as possible for the remaining 17 animals. Kinley (2010) further recommends excluding calves due to their lower chance of survival and difficulties in recognizing their sex from the air when monitoring.
vii. Dispersal

Dispersal away from the target area was observed in various caribou translocations. Adult caribou may be more likely to disperse away from the target area than calves when caribou are moved relatively short-distances (<100 km) due to efforts to return back to their original range (Young et al. 2001). Some evidence also suggests caribou released nearby (< 50 km) existing herds may leave the release area to join resident caribou (Bergerud and Mercer 1989).

Gonzales et al. (2015; Figure 4) recently developed a Bayesian Belief Network as a structured decision-making tool to examine the feasibility of translocating woodland caribou to reinforce a population in Pukaskwa National Park, Ontario. Though the network was developed specifically for the Pukaskwa caribou population, similar factors and network structure may be relevant to caribou in Western Canada.

Figure 4: “Influence diagram underlying a Bayesian Belief Network for a proposed woodland caribou translocation into Pukaskwa National Park.” (taken from Gonzales, E. K., Nantel, P., Rodgers, A. R., Allen, M. L., & Drake, C. C. 2015). Colours indicate network levels: Green = First level, ‘parent’/‘input’ nodes, either environmental conditions or management modifications that affect caribou persistence. Blue = Second level, ‘child nodes’, ecosystem variables that are directly affected by current conditions/parent nodes. Grey = Third level, variables that drive population dynamics. Yellow = Fourth level, demographic rates, which determine population trends (fifth level). The final level, i.e. the final “child node” is the outcome. (P. Nantel, pers. comm. 2016).
c) Logistics and costs
Prior to translocation, permits from all provincial, territorial and federal governments must be obtained and thorough consultation with each provincial / territorial government, First Nations and other stakeholders would need to occur, all of which may take a considerable amount of time (Kinley 2009).

Costs would vary depending upon a number of factors, including the number of caribou translocated and methods used to capture, move and release them, the locations and accessibility of source and target areas, the number of years over which translocations occur, monitoring plans and any complementary predator, alternate prey and habitat management, all of which also determine the number of staff required.

For a reintroduction to Banff National Park, assuming 20 animals translocated/year for 2 years from source herds in BC or southern Yukon, Kinley (2009) estimated that the cost of consultation, translocation and short-term monitoring (i.e. excluding any maternal penning or additional population surveys) would be $128,000 over the first year, $168,000 in year 2 and $61,000 in year 3, plus required staff time each year.

Note: See Kinley 2009, 2010 for further details on potential logistics for caribou translocations.
6.3 Captive-breeding

a) Captive-breeding vs. captive-rearing
Both captive-rearing and captive-breeding can be considered ‘ex situ’ management techniques (as described in Section 3.2) and fall along a continuum of techniques involving keeping caribou in captivity for a given period of time. While it can be difficult to categorize projects, it is important to distinguish between these methods, as differences in their management can have implications for released animals. Within this document, we consider ‘captive-rearing’ to be any situation in which caribou were held within a confined area for a short period of time (weeks to months), but breeding between individuals was not planned or managed. Formal ‘captive-breeding’ programs are considered to be those in which select animals are bred over a defined period to allow for releases involving breeders and/or offspring to an identified area for a conservation purpose.

b) Advantages and disadvantages of captive-breeding and release programs
One advantage of captive-breeding and release programs is that a limited number of founder animals could produce a large and predictable source population for later releases (i.e. it may not compromise wild populations to the same extent as multiple wild-to-wild translocations). Furthermore, if release into the wild is not deemed appropriate at the current time, captive-breeding without release may be used to establish ‘insurance populations’ that ensure the continued existence of the species until a suitable time for release (IUCN/SSC 2014).

However, captive-breeding and release programs for caribou are also likely to involve a number of challenges. In evaluating the utility and feasibility of translocation in the recovery of the Banff caribou population, Kinley (2009) suggested that wild-to-wild translocation be chosen over captive-breeding due to the lack of any large-scale breeding facility for caribou, greater planning and higher costs associated with captive-breeding, higher risks of disease involved in rearing caribou in close proximity to other animals, the possibility that captive-reared caribou would be more ‘naïve’ than wild-born caribou (i.e. may experience higher mortality risk from predation) and the time required to build the captive stock. There has also been some suggestion that captive caribou may experience lower fecundity than wild caribou (B. Irving pers. comm. in Whittington 2011). Finally, as with other techniques, the true conservation utility of captive-breeding is realized once translocations and releases into the wild are done and wild populations are increasing; therefore, the problem is not solved solely by creating and establishing a captive herd.

c) Previous experience with captive-breeding
Reindeer husbandry has been practiced in Eurasia since as early as the 9th century, and herding and ranching of reindeer for subsistence purposes was introduced to Canada at the end of the 19th century (Haigh 1991). Although the extent to which reindeer are domesticated has varied, captive management of the species for ranching purposes is relatively well-established. In addition, breeding and rearing of caribou commonly occurs at zoos around the world.

Captive-breeding and release programs for conservation purposes have been theoretically considered and concluded likely feasible (see references in Kinley 2009). However, to our knowledge, formal
captive-breeding of caribou for a conservation translocation has never been conducted. Several translocation projects examined held caribou within enclosures for a relatively long period of time (up to several years), during which time calves were born and raised within the enclosures (see Appendix 2: Charlevoix, Minnesota, Baxter State Park and Finland translocations). However, it is not clear whether these projects can be considered formal captive-breeding programs as the degree to which breeding was managed is unclear.

d) Logistics

Fundamental techniques have been established for successful captive-breeding and release programs, but the logistics of implementing a formal captive-breeding project for caribou conservation remain largely unknown. Therefore, research into all aspects of captive-breeding and release processes would be required to help determine best practices for success.

A captive-breeding and release program can be considered in 4 iterative stages: identification of founder animals for captive breeding, growth of the captive population, release(s), and post-release monitoring. Each of these phases would be planned in light of potential alternative actions, and in terms of risk—adequate risk assessments would need to be conducted as outlined in the IUCN/SSC translocation guidelines (2013). Calgary Zoo (2014) identified a number of research questions for each of the four stage that would need to be addressed for a caribou captive-breeding and release program:

1. Founding Stage
 - How many caribou (males and females) founders need to be captured to maintain desired genetic diversity in captivity over time, and to produce offspring for release?
 - Over how many years are captures from the wild necessary to satisfy genetic / demographic needs of the captive population over time?
 - Which diseases / parasites should be avoided in forming the captive population? Which parasites / serological adaptations are desirable to be retained?
 - Where are the most appropriate (i.e., genetics, behaviour, size) source population(s) of caribou to accommodate long-term goals of assisting recovery in British Columbia and Alberta?
 - What short / long-term effect does capture from the wild have on remaining source populations?
 - How can captures of wild individuals, transport, and subsequent acclimation to captivity best minimize stress and mortality?

2. Breeding Stage
 - Will behaviours change in individuals or among generations that might increase / decrease the suitability of caribou for release?
 - Which behaviours / physiological characteristics are associated with successful breeding?
 - Are behaviours associated with successful management in captivity (e.g. ‘tameness’), well-aligned with post-release requirements for survival / breeding (e.g. ‘predator avoidance’)?
 - Can pre-release training improve behavioural suitability for release?
3. Release Stage
- How many individuals can be released during which periods to maximize gains in the wild, while minimizing genetic diversity / demographic losses in captivity?
- Which transport / release method(s) minimize post-release dispersal, maximize group cohesion, and for reinforcements result in herd formation with wild individuals?
- Which transport / release method(s) result in maximum short and long-term survival / reproduction of released individuals?
- What pre / post-release management (e.g. predator limitation, food supplementation, human access-restriction) can maximize short / long-term survival / reproduction of released individuals?
- Under what conditions would released animals be re-captured and returned to captivity?

4. Management of reintroduced / reinforced populations
- Which behaviours, habitats and predator densities result in maximum short or long-term survival / reproduction of released individuals?
- Is maternal penning useful / necessary to assist released individuals?
- Is predator removal necessary for reinforcement / reintroduction success and if so under what habitat conditions?
- Is genetic diversity retained in wild populations, do populations differ in genetic structure, and are certain genotypes most aligned with survival / reproduction?
- Does reintroduction / reinforcement significantly improve the viability of mountain caribou?

Further break-down of these 4 stages (Figure 5) outlines numerous steps in a potential caribou captive-breeding and release program, each of which will involve decisions that must be guided by sound science and will affect overall project logistics and costs.
Figure 5: Steps in a potential caribou captive-breeding and release program (based on Calgary Zoo’s 2014 flow chart)
6.4 Captive-rearing (Maternal Penning)

Maternal penning, also known as ‘caribou rearing in the wild’, is a head-starting technique that aims to increase calf survival by protecting calves from predation in the first few weeks of life (when mortality is generally highest).

Pregnant females are captured in late-March or early-April and relocated to a protected pen within the herd’s native range to give birth and raise their young. Specific methods have varied depending upon the herd size, project scale and resources available. Typically, pens have consisted of a $\geq 1.5\,\text{m}$ geotextile fence, surrounded by one or two outer electric fences. Pen sizes have varied depend upon the number of captured individuals and project resources available, ranging between approximately 2 – 12 ha. Penned caribou are fed natural lichens upon first entering the pen and gradually transitioned to commercial reindeer pellets; feed is reverted back to lichen prior to release. In June or July, all calves and adults are released back into the wild.

We summarized 4 maternal penning projects that have been conducted within YT, AB and BC from 2003 to present-day.4

“Professional Forester Kevin Bollefer helps a pregnant caribou as they toboggan her into the protective maternity pen” (RCRW 2015)

4 Note on another case of captive-rearing (not maternal penning): In another translocation project summarized (Adak Island, Appendix 2) 72 caribou calves were captured and hand-reared for 2 months prior to being released. Calves were reared in captivity for approximately 2 months prior to release, over which time they were bottle fed and most are reported to have become tame (Jones 1966). Nearly all losses while in captivity occurred within the first 2 weeks, totaling 68% of the captive population in 1958 and 69% in 1959, which suggests captivity-induced stress may have been the cause (Jones 1966). Once released, the caribou remained in a group and showed signs of imprinting until 1962, after which time the band dispersed and signs of imprinting were lost (Jones 1966). The population rapidly expanded to an estimated 2,600 – 2,800 in June 2012 (USFWS 2014b).
a) Are survival rates and/or recruitment higher for pen-born as compared to wild-born calves? Previous projects have found mixed results regarding the effectiveness of maternal penning in improving calf survival, but conclusions are difficult to draw given the few projects conducted thus far, their scale (mostly pilot projects) and concurrent predator or alternate prey control programs that confounded results.

b) Does capture and penning itself appear to negatively affect captured caribou? There appear to be few negative effects of penning on the well-being of caribou. Adult females seem to adapt well to captivity and give birth to live and healthy young. Adults and calves have also experienced relatively high survival while in the pen. However, any potential long-term effects are unknown.

c) Have maternal penning projects impacted caribou population growth? Other than the Chisana project, all penning programs have been conducted as pilot projects (10 -18 penned female caribou, conducted over only 1-2 years). Furthermore, all 3 penning projects implemented in AB and BC have had predator or alternate prey reductions conducted within the herd’s range over at least one of the years in which maternal penning occurred. Therefore, there is little empirical evidence that maternal penning projects impact caribou population growth.

Though the relatively large number of captured females (and calves raised) over the course of the Chisana project was too low in proportion to the wild population’s size to generate population growth, maternal penning may be an effective short-term option in the recovery of smaller at-risk populations of caribou (CCRT 2010). Adams et al. (2006 in Kinley 2009) suggest ≥ 1/3 of all females within a population should be penned for this technique to be effective. Similarly, Serrouya et al. (2015) estimated that approximately 30% of the Columbia North subpopulation would need to be penned to generate 2% growth per year (λ = 1.02).
d) Logistics and costs

By utilizing natural fostering methods within a herd’s native range, maternal penning may avoid problems regularly experienced in long-term captive-breeding and release programs including reductions in genetic diversity, disease risk, loss of natural instincts, and high costs. It may also present a more publicly-acceptable recovery option than some other techniques (e.g. predator control).

That being said, maternal penning is only likely to be successful in recovering caribou populations if conducted in conjunction with other conservation actions, such as habitat and predator-prey management (CCRT 2010, Smith and Pittaway 2011, Serrouya et al. 2015).

Maternal penning is generally expensive relative to other intervention options, such as translocation and predator control (though probably not more expensive than captive-breeding). However, the cost varies between projects depending upon the herd size and project-specific population growth objectives, which determine the number of caribou that must be penned (plus associated costs related to construction, staff, etc.), and the accessibility of the penned area.

The cost of penning individuals of the Little Smoky herd in 2006 was approximately $40,000 CAD per calf (Smith and Pittaway 2011). The anticipated cost of maternal penning for the Klinse-Za herd in 2014 (including planning/permitting, lichen/feed, camp construction, collars, pen construction, capture and transport, administration, and shepherding, but excluding any predator removal) was approximately $452,000 CAD (Klinse-Za maternal penning steering committee 2014a). Maternal penning, excluding any capture costs, was estimated to cost approximately $250,000 over the first year and $200,000 each subsequent year when considered as part of a translocation-aided recovery program for Banff (L. DeGroot pers. comm. in Kinley 2009).

Given the variability in cost between projects, cost:benefit ratios must be determined for individual cases and are expected to be more favorable for small, highly-endangered herds in relatively accessible areas (CCRT 2010).
6.5 Predator Exclosure Fencing

6.5.1 Concept
Fencing of large areas to protect endangered animals from threats has been attempted in a number of locations to date (Hayward and Kerley 2009). In particular, Australia, New Zealand and South Africa have adopted large-scale fencing to protect target animals from predation, overgrazing and over-hunting (Hayward and Kerley 2009). Fences can protect enclosed populations from any threat arising from direct human influence (e.g. habitat loss and alteration, hunting; Hayward and Kerley 2009). ‘Predator-proof fencing’ may address unsustainable levels of predation by preventing predator access to animals protected within an enclosed area (Hayward and Kerley 2009).

6.5.2 The ‘Big Fence’ caribou project
The Oil Sands Leadership Initiative Land Stewardship Working Group (OSLI LSWG) first began investigating the technical feasibility of using large-scale predator exclosures for boreal caribou conservation in Alberta in 2012 (OSLI LSWG 2012). Since the assimilation of OSLI into Canada’s Oil Sands Innovation Alliance (COSIA), this concept has been adopted and is now being advanced by COSIA as one prong of a multi-pronged strategy by the oil sands sector to contribute to recovery of boreal caribou in the oil sands region of northeast Alberta (Amit Saxena pers. comm.).

The concept involves enclosing a large area of caribou habitat (potentially hundreds of km\(^2\)) with a predator-proof fence to protect caribou from predation. The objective of a large predator exclosure would be to establish and maintain a viable caribou population that could also ideally be used to supplement other caribou populations. An existing population that is declining and facing a high risk of extirpation would be enclosed, although depending upon the population chosen, caribou may need to be captured from elsewhere to supplement the population.

A ‘viable’ population is here considered one “with stable or positive population growth; that is large enough to withstand random events (e.g., severe weather) and human-caused pressures; but requires ongoing management intervention to persist” (OSLI LSWG 2012). The established population would eventually be freed from the fence once suitable habitat has been restored (> 40 years) to generate a self-sustaining free-ranging population.

Participants of a workshop held by OSLI LSWG in May 2012 identified a number of potential benefits associated with conducting such a project within Alberta, which included promoting caribou population growth and generating a source population for releases and other translocations (OSLI LSWG 2012).
Fences can pose possible risks to the species they are meant to protect, which must be evaluated and weighed against potential benefits. Risks may be greater for species that require large areas due to the difficulty in creating enclosures big enough to meet their habitat requirements (Hayward and Kerley 2009). The 2012 workshop participants also recognized several challenges and assumptions, including the need for active management of fenced populations, the project’s integration into a broader management program, and the potential risks of fire and predator breaches. (For additional information on benefits, challenges and specific planning resulting from the May 2012 workshop, see OSLI LSWG 2012.)

In 2014, the team tested fence designs to determine whether fences would hold up against predators in the area and which design works best to do so (Alexander 2014). A one-hectare test site was enclosed by a 2.5 metre high, page-wire fence with smooth sheet metal along the top (to prevent black bears from climbing over) and a metre-long skirt along the bottom to impede digging (Alexander 2014). Bait, such as moose carcasses, was placed inside the enclosure to attract predators and thereby test for any shortcomings in the fence’s design (Alexander 2014). The fence appeared to be effective in excluding most predators; only one black bear penetrated the fence (Alexander 2014).

Given the technique’s viability, experts and managers are now determining project details, such as how large an area the fence should enclose and how many caribou could be held within the enclosure (Alexander 2014). COSIA is currently advancing the big fence concept by conducting a scoping study to determine technical, regulatory and stakeholder engagement requirements for such a project. This project is currently underway, and reports or deliverables have not yet been completed (Amit Saxena pers. comm.).

6.5.3 Logistics and costs
Fence type and construction must be tailored to the prey and predator species of interest, as no one design appears to be effective in every situation (Hayward and Kerley 2009). As mentioned, a design for caribou fencing was recently tested and found to be relatively effective. It is unlikely that any fence will be completely effective 100% of the time (Long and Robley 2004) (e.g. the caribou experimental fence was breached by one black bear). Managers must decide what effectiveness level (i.e. how often the
fence is breached) is considered sufficient to adequately recover the protected population (Long and Robley 2004). Bode and Wintle (2010) developed a return on investment framework as a systematic method to compare costs and benefits of fence designs.

Fencing projects are generally very costly due to high initial costs of construction, as well as longer-term expenses (Hayward and Kerley 2009). Maintenance is considered one of the most important determinants of fence effectiveness and the largest issue with any fencing project (Hoare 2003 as cited in Ferguson and Hanks 2010). 2012 Caribou workshop participants considered the standard life expectancy of a fence to be 25 years, with replacement required thereafter. Participants also expected that staff would need to inspect the entire fence at least weekly (with additional monitoring using remote cameras) and over the long-term, the fence would eventually need to be removed.

Logistics and associated budgets must also include any associated additional management activities, such as management of caribou, predators, alternate prey and other species, veterinary services to monitor and address caribou health, research and monitoring activities, habitat restoration, access management, etc.

Feasibility assessments commissioned by OSLI LWSGI (2012) suggested that implementation of a large-scale predator exclosure within caribou range would require a financial commitment in the order of $10 million to cover the costs of construction, annual maintenance and operating, and eventual fence removal (OSLI LSWG 2012 in Golder 2014).
7 REFERENCES

Serrouya, R. D. (2013). An adaptive approach to endangered species recovery based on a management experiment: reducing moose to reduce apparent competition with woodland caribou (Doctor of Philosophy), University of Alberta, Edmonton, AB.

Vors, L. S. (2013). Caribou in Canada: Ecology and Policy (Doctor of Philosophy), University of Alberta, Edmonton, AB.

Wilson, S. (2009). Recommendations for predator prey management to benefit the recovery of mountain caribou in British Columbia. BC Ministry of Environment, Victoria, BC.

Appendix 1: Predator and Alternate Prey Control

<table>
<thead>
<tr>
<th>Targeted herds (DU), Province</th>
<th>Years</th>
<th>Target species</th>
<th>Removal (#/proportion/densities)</th>
<th>Reduction methods</th>
<th>Responses in the targeted predator/alternate prey populations after control ended</th>
<th>Survival and recruitment responses in caribou populations</th>
<th>Caribou population responses</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlevoix (Boreal), QC</td>
<td>1967 - 1979</td>
<td>wolves</td>
<td>8 wolves killed 1978 -79 (no info found on other years)</td>
<td>Snares and traps + shooting from helicopters 1978/99 (other years unknown)</td>
<td>The government continued to encourage wolf harvests after completion of the program (harvesting rate ~ 40 - 41% in the 1990s/2000s), but wolf numbers remained high.</td>
<td>The maximum calf survival 1978 - 1981 was recorded in 1979 (9/9 calves survived), which coincides with wolf reduction over the winter of 1978/79. Calf mortality averaged 21% between 1978 - 1981 and 57% 1998 - 2001. Adult survival was lowest in 1979 (87%), immediately following wolf control.</td>
<td>Stable at ~ 50 animals during wolf control; only started to increase in the 1980s, once the program had ended. Stabilized again at 100 - 125 individuals in the 1990s. Declined in 2000s, now stable at ~83 animals. Remain at-risk.</td>
<td>Sebbane et al. 2003, 2008, 2011; Jolicoeur et al. 2005; St. Laurent and Dussault 2012; Sepaq 2015</td>
</tr>
<tr>
<td>Delta (Grant’s), AK</td>
<td>1976 - 1982</td>
<td>wolves</td>
<td>70 - 80% below pre-control population (14.4 - 4.4 wolves/1000km²) each year 1976 - 1980; 55 - 60% below pre-control pop’n (6.6 - 8.4 wolves/1000km2) each year 1980 - 1982</td>
<td>Shooting from a helicopter or fixed-wing aircraft. Public trapping and hunting continued after control ended, but not enough to significantly affect wolf population.</td>
<td>Following the end of wolf control, the wolf population rebounded to near pre-control densities by 1985 (11.5 wolves/1000km2) and wolf numbers exceeded those before control by 1991 (15.7/1000km2).</td>
<td>Calf recruitment significantly increased following the start of wolf reduction in 1976. Calf survival from 1976 - 1979 also increased significantly in the 2 control herds, but to a lesser extent. Calf recruitment within the Delta herd during wolf control (1976 -1981) was between 39 - 65 calves:100 females; highest recruitment observed in 1979, 3 years after control began. Calf recruitment to 6 months was significantly negatively correlated to wolf numbers.</td>
<td>Pop’n increased from 1975 to 1989 (λ = 1.12 over entire period, 1.16 during 7 years of wolf control 1975 - 1982), 1.06 following wolf control, 1982 - 1989), followed by a decline from 1989 to 1993 (λ = 0.78). Delta increased in density from 183 to 891 caribou/1000km2 during the 14 years after control began vs. the Denali and Macomb (reference) herds remained between 100 - 370 caribou/100km2. Wolf control and favourable weather thought to have jointly allowed for caribou pop’n growth.</td>
<td>Gasaway 1983; Boertje et al. 1996; NRC 1997</td>
</tr>
<tr>
<td></td>
<td>1993 - 1994</td>
<td>wolves</td>
<td>Removal of 62% of pre-control autumn 1993 population (15.4 wolves/1000km²) and 56% of pre-control 1994 population (10.6 wolves/1000km²)</td>
<td>Trapping and occasional shooting from the ground, but no shooting from aircrafts.</td>
<td>Wolf population rapidly rebounded to near pre-control levels.</td>
<td>Mortality of 4 - 16 month old female caribou declined from 60% before wolf control to 38% following wolf control, but mortalities attributed to wolves did not decrease. No change in survival of female caribou > 16 months before versus after wolf control. Avg. recruitment to Sept/Oct in the Delta herd: 7.4 calves:100 females 1992 -</td>
<td>The Delta caribou herd stopped declining and stabilized over the first year of wolf control; increased over the next 2 years at a rate of approximately 12%, but again declined through 2000. Population trends and recruitment estimates were similar within the</td>
<td>Boertje et al. 1996; Valkenburg et al. 2004</td>
</tr>
<tr>
<td>Year Range</td>
<td>Herd Name</td>
<td>Population Changes</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978 - 1981</td>
<td>Horseranch</td>
<td>Poisoned the first winter and shot from a helicopter the second and third winters.</td>
<td>Calf survival doubled during wolf control and the proportion of calves in the fall population significantly increased from ~6% in 1977 to 16 – 17% 1978-1980 in the Horseranch population. The percentage of calves in reference herds varied over the years, but averaged 10 - 13%. Examining all populations, the average percentage of 5-month old calves in the population was 15.1% vs. 7.5% and the average calf mortality was 70% vs. >85% in years when there were fewer wolves compared to years when there were more wolves, respectively. No direct measurement of adult survival available, but hunting suggested natural adult mortality rates were 8% for adults in the Horseranch herd when wolves were reduced and 12% when wolves recovered after control, versus 18 - 21% for adults in the reference herds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982 - 1987</td>
<td>Horseranch</td>
<td>Caribou recruitment to 5 months within Kechika was significantly negatively related to the density of wolves prior to parturition. For all ungulates studied (caribou, sheep, elk, moose), recruitment of calves 5 - 9 months old in both the Kechika and Muskwa regions was correlated with the density of wolves before parturition. When wolves were reduced, average calf survival increased 2 - 5 times compared to control populations.</td>
<td>Mean λ values for the Kechika caribou population were 0.93 in years without reductions versus 1.14 with reductions (significantly different). The population generally increased when recruitment was high in years with low wolf densities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kechika region, including Horseranch herd (northern mountain), BC

1978: 22 of 36 (61%) 1979: 25 of 29 (86%) 1980: 23 of 27 (85%)

Wolf densities in reference herds 9 - 10 wolves/1000km² (1978 - 1981); Horseranch included 10 wolves/1000km² before reductions, 0.8-3.8 wolves/1000km² following reductions.

Mean λ values for the Kechika caribou population were 0.93 in years without reductions versus 1.14 with reductions (significantly different). The population generally increased when recruitment was high in years with low wolf densities.
Finlayson (northern mountain), YT

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983-</td>
<td>wolves</td>
<td>To 58% of original population size in 1983 (i.e. 42% removed), to 14% of original pop’n thereafter (1984-1989) (i.e., 83-86% removed)</td>
</tr>
<tr>
<td>1989</td>
<td>Shooting from helicopter; incidentally trapped</td>
<td>Following the end of the program, wolves rebounded from 24 wolves in March 1989 to 240 wolves by March 1994 (~10.4 wolves/1000 km²).</td>
</tr>
<tr>
<td></td>
<td>Recruitment increased over wolf control, from 17 calves:100 females before control in Oct. 1982 to an average of 50.6 calves:100 females 1984-1990. When wolf control ended, recruitment decreased to 9-44 calves:100 females between 1990 and 2006. Calf recruitment was significantly higher during treatment vs. post-treatment years. Adult mortality decreased from 10-45% in 1982-1993 before wolf control to 0-22% in 1984-1987. Adult caribou mortality was strongly correlated to the number of wolves. Hunting may have increasingly added to mortality (3.8%) with caribou population decline.</td>
<td>2012</td>
</tr>
<tr>
<td>1992</td>
<td>7 wolves/1000km² following wolf control (1993 - 1998)</td>
<td>69-83% below 1992 pre-treatment density; 8.2 wolves/1000km² (1992), 1.5-2.8/1000km² among other treatments.</td>
</tr>
<tr>
<td>1993-</td>
<td>wolves</td>
<td>Shooting from helicopter 1993 - 1997; surgical sterilization 1994 - 1997; experimental ‘chemical’-immuno-contraception experiments were conducted on alpha wolf pairs after 1997, but the data has not been released.</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>Unknown * Sterilization results: Sterilization prevented 12 breeding events that would have otherwise produced ~68 pups from 1994-1997. Sterilizations thus reduced wolf population increases by 11-58% (1995 - 1998). Territoriality, pair bonding and survival rate were unaffected by surgical sterilization. The authors concluded that sterilization was an effective method to control wolf population expansion.</td>
</tr>
<tr>
<td>1998</td>
<td>Annual recruitment in the Aishihik caribou herd significantly increased from 15 calves:100 females pre-control to 42 calves:100 females during wolf control, whereas none of the other herds showed this trend. Recruitment was highest in Oct 1996, with 47 calves:100 females. The Aishihik herd lost proportionately fewer calves between July - Oct. during treatment (7-18%) as compared to pre-treatment (34-41%) and loses for the Aishihik herd were lower than that of the Wolf Lake herd (17-60%) over all treatment years (P<0.01). Although pre-treatment data for Aishihik adult survival rates were too variable to estimate trends, there was no evidence to indicate adult survival changed in response to wolf control and census interpolation methods estimated mean annual adult survival to be 0.87 and 0.91 before and during wolf control respectively.</td>
<td>2012</td>
</tr>
<tr>
<td>1997</td>
<td>When wolves were reduced, the Aishihik caribou herd stopped declining and then rapidly increased at a finite rate of 1.15 during wolf control. In comparison, the Wolf Lake herd remained stable and the Chisana herd declined, but the Ibes herd increased at rate similar to Aishihik (i.e. had similar responses without wolf control).</td>
<td>2012</td>
</tr>
</tbody>
</table>

Aishihik (northern mountain), YT

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987-</td>
<td>wolves</td>
<td>4 in 1987 on east side of lake, few or no wolves remaining on east side; i.e. nearly 100% removed, 7 in 1988 (4 east side, 3 west side, 30-50% of population in the area killed) Estimated density ~1/100km²</td>
</tr>
<tr>
<td>1988</td>
<td>Shot (from ground?)</td>
<td>Unknown; some evidence of recolonization After reductions in 1987, calf survival was higher on the east side of the lake (wolves reduced) vs. west side. After reductions in 1988, some wolf predation still occurred; calf survival to Oct marginally improved, but few calves remaining by March. Over all years, when both natural wolf absence and control were included in analysis, calf survival to Oct and estimated March recruitment was significantly higher in year where wolves were absent. When wolf control</td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td>The Quesnel Lake population declined from 220 caribou in 1986 to 94 in 1989 (finite rate of increase = 0.754). The Wells Gray population increased from 231 in 1987 to 265 in 1989 (finite rate of increase = 1.04).</td>
</tr>
</tbody>
</table>

Wells Gray (southern mountain), BC

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987-</td>
<td>wolves</td>
<td>Over the period of wolf control, the Finlayson caribou herds nearly doubled in size between 1983 and 1990. Between 1986 and 1990 alone it increased from 3,073 to 5,950. Exponential annual growth rate r = 0.17 (1986 – 1990). However, following the end of the program caribou showed a reciprocal response to wolf increases; the herd declined to 2,077 - 3,100 animals by March 2007 and exhibited a decreasing population trend (r = -0.16, 1990 – 1999).</td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td>Over the period of wolf control, the Finlayson caribou herds nearly doubled in size between 1983 and 1990. Between 1986 and 1990 alone it increased from 3,073 to 5,950. Exponential annual growth rate r = 0.17 (1986 – 1990). However, following the end of the program caribou showed a reciprocal response to wolf increases; the herd declined to 2,077 - 3,100 animals by March 2007 and exhibited a decreasing population trend (r = -0.16, 1990 – 1999).</td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td>Over the period of wolf control, the Finlayson caribou herds nearly doubled in size between 1983 and 1990. Between 1986 and 1990 alone it increased from 3,073 to 5,950. Exponential annual growth rate r = 0.17 (1986 – 1990). However, following the end of the program caribou showed a reciprocal response to wolf increases; the herd declined to 2,077 - 3,100 animals by March 2007 and exhibited a decreasing population trend (r = -0.16, 1990 – 1999).</td>
</tr>
</tbody>
</table>

References

alone was assessed, calf survival to Oct was significantly higher in areas where wolves were controlled as compared to areas where wolves were present and uncontrolled; however, by March, there was no difference in recruitment between controlled and uncontrolled areas.

Wells Gray North subpopulation and Bakerville herd, together termed the "Quesnel Highland" caribou (southern mountain), BC

<table>
<thead>
<tr>
<th>Phase</th>
<th>Wolves and Moose</th>
<th>Fertility Treatment and Lethal Methods</th>
<th>Recruitment</th>
<th>Adult Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (2003/2004): 5 - 9 wolf packs fertility treated, mean pack size decreased ~8 to 4.5 wolves and wolves reduced by 13% March 2003, 27% 2004</td>
<td>After program halted in 2004, wolves increased to 9.2 wolves/1000km² (similar to original unexploited density in 2001) by Dec 2007.</td>
<td>There was no observed change in recruitment with reduced wolf densities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 (2008/2009): 9 - 13 wolf packs fertility treated (sterilized 3 wolves within each group) March wolf density reduced by 36-48% after 2009 + Moose harvests increased after 2001 (but no comparison to pre-treatment)</td>
<td>Combination of fertility treatment and lethal methods (aerial capture then killed, no direct shooting) + moose hunting harvests increased.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of caribou in the treatment herd showed an overall increase since 2002, but the comparison herds also increased until 2006. From 2006-2012, the treatment herd was the only group that increased, but there no evidence that the trend was significantly different from comparison herds.

Little Smoky (boreal), AB

<table>
<thead>
<tr>
<th>Phase</th>
<th>Wolves</th>
<th>Removal Methods</th>
<th>Recruitment</th>
<th>Adult Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005/06 - 2012</td>
<td>~45% of mid-winter pop’n each year = average removal of 11.6 wolves/1000km² = 841 wolves total</td>
<td>Relatively consistent removal rates over all years of the program suggest the wolf population maintained high numbers despite reductions each year.</td>
<td>Mean recruitment within LSM significantly increased over time. Mean recruitment in the RPC reference herd (0.19 and 0.17 pre- and post-control respectively). Experimentally, recruitment was not significantly different between populations or between before and after treatment periods (0.12 pre-control, 0.19 post-control). Mean adult female survival within the LSM herd did not significantly increase over time. Mean adult survival in the RPC herd was low (0.83 and 0.79 pre- and post-control respectively). Experimentally, adult female survival was significantly different between the LSM and RPC herds, but not between before and after treatment periods (0.89 pre-control, 0.91 post-control), nor was there an interaction between treatment and population.</td>
<td>The empirical/stochastic λ for LSM increased from 0.95/0.94 prior to control to 0.99/0.99 following control (4.6% increase in mean population growth). But increase began just prior to wolf control, with the largest λ (1.1) recorded the year before wolf control began. The RPC (control population) experienced a reduction in population growth (λ = 0.908/0.90 to 0.861 /0.86; 4.7% decline). The BACI design showed that LSM and RPC population trajectories were not significantly different prior to wolf control, but significantly diverged following treatment. Projections indicated wolf control generated a 20% difference between realized and projected population size.</td>
</tr>
</tbody>
</table>
An Exploration of Translocation Tools for Boreal Caribou Conservation

Fortymile (Grant’s), AK

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 - 2001</td>
<td>Wolves</td>
<td>Treated 15 packs; 8 sterilized packs remained as of April 2003</td>
</tr>
</tbody>
</table>

Surgical sterilization of the dominant pair and translocation of other wolves

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>

Wolf population increased from pre-control to 2008.

- **Calf survival** was >= 50% during the period of wolf reduction from 1998/99 to 2001/02. In comparison, when herd size was stable, calf survival was 33 and 41% in 1994 and 1995. But no evidence to suggest wolf predation had decreased following treatment (maybe b/c caribou moved out of the treatment area and wolves from outside the treatment area hunted within the area). Recruitment from 1998 - 2002 was improved compared to pre-treatment. Adult survival rates exceeded 87% during the period of wolf reduction from 1998/99 to 2001/02. In comparison, when herd size was stable, adult survival was 75 and 80% in 1990 and 1991.
- **Caribou recruitment avg. 35 calves:100 females for 2 control years vs. avg. 27 calves: 100 females 5 years pre-control.**
- **Caribou populations within the treatment area had mixed responses to moose reductions; the larger subpopulation, Columbia North, increased following moose reductions, while the smaller subpopulations, Columbia South and Frisby-Queest, continued to decline. Both subpopulations within the reference area showed continued declines over the long term.**

- **Moose harvest**

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 - 2005</td>
<td>moose</td>
<td>10-fold increase in hunter harvest 2003 – 2005, reduced harvest 2005 - 2010; moose pop’n declined 71% from 2003 - 2011 (1.58/km² to 0.44/km²)(decline started 1-2 years after treatment began)</td>
</tr>
<tr>
<td>2005</td>
<td>Moose harvest</td>
<td>Moose pop’n declined by 71% between 2003 and 2011, beginning 1-2 years after the start of harvest increases in 2003. Likely triggered by hunting, driven by depensatory predation by wolves. Declines in moose numbers appeared to also reduce the wolf population, likely due to dispersal (but maybe also starvation).</td>
</tr>
</tbody>
</table>

Recruitment was not significantly different before vs. after treatment in either the treatment or reference areas. Wolf reductions may not proportionately decrease predation risk to caribou. Remaining wolves spent more time in caribou habitat. But no evidence that caribou increased in diet (based on scat and kill-sites).

- **Caribou populations within the treatment area had mixed responses to moose reductions; the larger subpopulation, Columbia North, increased following moose reductions, while the smaller subpopulations, Columbia South and Frisby-Queest, continued to decline. Both subpopulations within the reference area showed continued declines over the long term.**

Columbia North, Columbia South, Frisby-Bolder/Queest (southern mountain), BC

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 - Ongoing?</td>
<td>moose</td>
<td>2005 population: ~3000 moose (1.18 moose/km²) 2008 - 2009: ~1818 moose (0.73 moose/km²) (50 - 60% reduction)</td>
</tr>
</tbody>
</table>

Moose harvest

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Moose harvest</td>
<td>2009 max dispersal in treatment area was sig. diff. from 2007 max dispersal in treatment area and 2009 dispersal in control area (non-overlapping confidence intervals). Possible lag time 2 – 3 years. Trends indicated increasing dispersal over time</td>
</tr>
</tbody>
</table>

Hart Ranges (southern mountain), BC

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>

Russell 2010

Serruya 2013, 2015

Steenweg 2011

Boertje and Gardner 2003

The Fortymile herd nearly doubled in size from 22,558 caribou in June 1995 to 43,375 caribou in June 2003, but this increase began prior to wolf treatment.
in treatment area (not statistically sig.). No evidence for change in mortality.

<table>
<thead>
<tr>
<th>South Selkirks (southern mountain), BC</th>
<th>Jan 2015 - Ongoing</th>
<th>wolves</th>
<th>11 (Of the wolves targeted, seven to 10 remain)</th>
<th>Shooting from helicopters</th>
<th>Unknown</th>
<th>Unknown</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintette, Moberly/Klinseza, Scott and Kennedy-Siding (central mountain), BC</td>
<td>Jan 2015 - Ongoing</td>
<td>wolves</td>
<td>73 (most around the Moberly and Quintette caribou herds)</td>
<td>Shooting from helicopters</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Appendix 1 Table References

An Exploration of Translocation Tools for Boreal Caribou Conservation

Appendix 2: Translocations

Note: Includes wild-to-wild translocations, as well as those that involved captive-breeding or rearing

<table>
<thead>
<tr>
<th>Target Location/Herd</th>
<th>Source Location/Herd</th>
<th>Source Subspecies/DU</th>
<th>Year(s)</th>
<th>Type of Translocation</th>
<th># released</th>
<th>Major Outcomes</th>
<th>Present or Extinct</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American Translocations since 1960, herding excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purcell-South caribou herd (mountain ecotype), Purcell Mountains, BC</td>
<td>Level-Kawdy herd, BC</td>
<td>Northern mountain DU (woodland)</td>
<td>March 2012</td>
<td>Reinforcement (~20 resident caribou)</td>
<td>19</td>
<td>10 died within the first 4 months after release. As of July 2013, 17 of the 19 translocated caribou were confirmed dead as a result of cougar predation (6), wolf predation (2), accidents (3), unknown causes other than predation (3), unknown causes which may include predation (2) and malnutrition (1). 1 bull confirmed alive, 1 cow status unknown. 2014 estimate: 19 caribou in herd, population stable, but expected to decrease over long-term. Second phase deferred to 2015.</td>
<td>Present</td>
<td>Gordon 2013; Environment Canada 2014; Leech 2015</td>
</tr>
<tr>
<td>Telkwa caribou herd (northern ecotype), Telkwa Mountains, BC</td>
<td>Chase/Sustut herd, BC</td>
<td>Northern mountain DU (woodland)</td>
<td>1997 - 1999</td>
<td>Reinforcement (6-8 resident caribou)</td>
<td>32 total (28 F, 4 M; 1997: 12; 1998: 16; 1999: 4)</td>
<td>Translocated caribou remained in the target area and herd increased to a peak of 114 caribou in 2006; Stronen et al. (2007) suggested translocation successful over short-term; then declined to approximately 40 animals by 2010; estimated at ~25 animals Oct 2013, declining population trend.</td>
<td>Present</td>
<td>Houwers 2006 and G. Schultz’ pers. comm. in Kinley 2010; Stronen et al. 2007; Cichowski 2014; Environment Canada 2014</td>
</tr>
<tr>
<td>South Selkirks herd (mountain ecotype), South Selkirk Mountains, Idaho, Washington, BC</td>
<td>Northern type from Itcha and Ilgachuz Mountains, BC; Mountain type from Columbia Mountains, BC</td>
<td>Northern and Southern Mountain DU (woodland)</td>
<td>1987 - 1990, 1996 - 1998</td>
<td>Reinforcement (~25 resident caribou)</td>
<td>103 total (1987: 12 northern and 12 mountain, 10 F/2M each; 1988: 14 northern and 10 mountain, each with 4 bulls; 1990: 12 mountain; 1996 - 1998: 43 mountain)</td>
<td>Survival over the first 3 years (April 1987 – March 1990): 67% for mountain, 33% northern caribou (33%) (p = 0.026). 5-year weighted average (March 1987 – Feb. 1992) annual survival rates: 74% mountain vs. 73% northern (p = 0.97). Northern caribou may have been more at risk of malnourishment b/c of attempts to feed on terrestrial lichens rather than the more abundant arboreal lichens (observations). Translocated mountain caribou (i.e. the same as the target herd) generally showed more similar movement patterns and had more interaction with the resident vs. northern ecotype that showed higher variability in habitat use and movement patterns. But all 7 dispersals from the release area were by mountain caribou. Translocated caribou that moved out of the release area established a new subpopulation south of the native residents; both subpopulations < 50 individuals in the early 1990s. Recruitment in 1991 and 1992 estimated 0.14 and 0.06, respectively. As of 2000, 26 of the 43 caribou transplanted in 1996 - 1998 had died (4 cougar predation, 1 grizzly bear predation, 1 accidental fall, 2 poaching, 18 unknown causes). Temporary increase in population following translocations, but declined to ~33 in 2004, 27 caribou in March 201318 animals in 2014.</td>
<td>Present</td>
<td>Compton et al. 1995; Warren et al. 1996; Almack 2000; USFWS 2008; DeGroot and Wakkinen 2013; “U.S.-ranging Selkirk ...” 2015; “Wolf cull...” 2015</td>
</tr>
</tbody>
</table>

An Exploration of Translocation Tools for Boreal Caribou Conservation

47
<table>
<thead>
<tr>
<th>Location</th>
<th>Reintroduction Years</th>
<th>Reintroduction Sites</th>
<th>Caribou Released</th>
<th>Mortality/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Alplands, BC</td>
<td>1984, 1986, 1987, 1988, 1991</td>
<td>Northern mountain DU (woodland)</td>
<td>52 total (1984: 13 adults, 2 calves to McClinchy Cr.; 1986: 8 adults, 1 yearling to McC. Cr. + 2 yearlings, 4 calves to Trumpeter Mtn.; 1987: 11 calves to Trp. Mtn.; 1988: 1 yearling, 2 calves to Trp. Mtn.; 1991: 8 calves to Trp. Mtn.)</td>
<td>Most animals released 1984 - 1986 (mainly adults) emigrated from the release area and returned to their original range. The 28 caribou released between 1986 and 1991 (mainly calves) remained in the release area. Adult caribou may be more likely to disperse away from the target area than calves when caribou are moved relatively short-distances (<100 km) due to efforts to return back to their original range. Herd likely mixes with both its source herds. 1989 - 1993: ~72 animals (~11% growth); decline to 23 individuals in 2001, ~7 individuals as of 2012, expected continued decline (wolf or grizzly predation suspected cause)</td>
</tr>
<tr>
<td>Itcha Ilgachuz Herd and Rainbow herd, BC</td>
<td>1984, 1986, 1987, 1988, 1991</td>
<td>Northern mountain DU (woodland)</td>
<td>1984: 13 adults, 2 calves to McClinchy Cr.; 1986: 8 adults, 1 yearling to McC. Cr. + 2 yearlings, 4 calves to Trumpeter Mtn.; 1987: 11 calves to Trp. Mtn.; 1988: 1 yearling, 2 calves to Trp. Mtn.; 1991: 8 calves to Trp. Mtn.</td>
<td>Most animals released 1984 - 1986 (mainly adults) emigrated from the release area and returned to their original range. The 28 caribou released between 1986 and 1991 (mainly calves) remained in the release area. Adult caribou may be more likely to disperse away from the target area than calves when caribou are moved relatively short-distances (<100 km) due to efforts to return back to their original range. Herd likely mixes with both its source herds. 1989 - 1993: ~72 animals (~11% growth); decline to 23 individuals in 2001, ~7 individuals as of 2012, expected continued decline (wolf or grizzly predation suspected cause)</td>
</tr>
<tr>
<td>Baxter State Park, Maine</td>
<td>December 1963, May 1989 & April 1990</td>
<td>Newfoundland DU (woodland)</td>
<td>56 total (1963: 24 (19 F, 5 M), 1989/1990: 32)</td>
<td>1963 release: Animals dispersed; failure. 1986: 27 caribou captured on Avalon Peninsula, Newfoundland. 22 survived, held in a ~6 ha enclosure for ~3.5 years. 1989: 12 captive-raised caribou were released into the park; after realizing that penned caribou experience a higher risk of meningeal worm infection, the remaining 20 wild and captive-raised caribou were released in 1990. Caribou reported to have become ‘skittish around people’ once released into the wild despite having been relatively tame in captivity, which researchers interpreted as a positive sign that captive-raised calves kept some natural instincts. One caribou also seen successfully evading two coyotes. After initial releases: 14 caribou were observed in 1964, but then dispersed and disappeared entirely after 1966. Only 1 of the 12 animals released in 1989 was confirmed alive by the end of the year. By November 1990, 25 were confirmed dead (12 killed by bears or coyotes), status of 7 unknown. Meningeal worm and black bear predation likely caused decline.</td>
</tr>
<tr>
<td>Gargantua Peninsula + 2 small offshore islands, ON</td>
<td>October 1989</td>
<td>Slate Islands, ON</td>
<td>39 (10 M, 26 F, 3 calves)</td>
<td>High initial mortality. By June of the following year, only 1 of 17 radiocollared animals remained alive (wolf predation). Some caribou escaped to surrounding islands, still exist at low densities in the area.</td>
</tr>
<tr>
<td>Nushagak Peninsula, Alaska</td>
<td>Feb 1988</td>
<td>Grant’s/barren-ground</td>
<td>146 (Composition: 82.2% females, 9.6% males and 8.2% calves)</td>
<td>Rapid growth in 1st 6 years (1988 - 1994) to >1,000 animals in 1994; peaked at 1,399 caribou in 1997; decline to 526 caribou in 2006; Stayed at ~550 caribou until 2009; then increased to 902 by July 2012. Over entire period, 1988 - 2013, r = 0.226. Annual female survival rate 1988 - 2013: 0.876 with hunting mortality included, 0.915 with hunting excluded. Hunting and predation accounted for 31.8% and 11.4% of all mortalities, respectively. Nutrition is thought to be the ultimate limiting factor.</td>
</tr>
</tbody>
</table>

Extinct
<table>
<thead>
<tr>
<th>Location</th>
<th>Herd Description</th>
<th>Dates</th>
<th>Method</th>
<th>Notes/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leach Island, ON</td>
<td>Slate Islands, Boreal DU (woodland)</td>
<td>1986</td>
<td>Reintroduction</td>
<td>80 total (28, 18, 16, 18) to 4 diff. sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only four caribou, possibly all female, remained by 1990.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presumed extinct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gogan and Cochrane 1994</td>
</tr>
<tr>
<td>Bowman Island, ON</td>
<td>Slate Islands, Boreal DU (woodland)</td>
<td>October 1985</td>
<td>Reintroduction (1940s)</td>
<td>3 (1 M, 1 F, 1 calf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By April 1986, all but one of the caribou had died (predation, emigration).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extinct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bergerud 1985, Bergerud and Mercer 1989; Bergerud et al. 2007; OWCRT 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montreal Island, ON</td>
<td>Slate Islands, Boreal DU (woodland)</td>
<td>1984</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>predated some, others moved off island.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extinct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bergerud and Mercer 1989; Bergerud et al. 2007; OWCRT 2008; Kinley 2010</td>
</tr>
<tr>
<td>Michipicoten Island, ON</td>
<td>Slate Islands, Boreal DU (woodland)</td>
<td>1982 & 1983</td>
<td>Reintroduction (1800s)</td>
<td>8 total (1 M, 3 F, 3 calves in 1982, 1 M in 1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In 1988, after 6 calving seasons, at least 26 caribou present (finite rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of increase of $\lambda = 1.22$); 2001: 160 animals (finite rate of increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>over 19 years = 1.18); 2003: > 200 caribou.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gogan and Cochrane 1994; Bergerud et al. 2007; OWCRT 2008; Kinley 2010</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>Newfoundland native herds, Newfoundland DU (woodland)</td>
<td>1961 - 1982</td>
<td>Introductions</td>
<td>384 total (22 different sites, 4 - 33 depending upon the site)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 1982, herds numbered ~1,500 animals; 17 of the 22 sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maintained viable populations. Evidence suggests caribou released nearby (<50 km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Existing herds may leave the release area to join resident caribou.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presumed those deemed successful are still present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bergerud and Mercer 1989</td>
</tr>
<tr>
<td>Belcher Islands, Nunavut</td>
<td>Reindeer Reserve, Tuktoyaktuk, NWT</td>
<td>March 1978</td>
<td>Introduction of reindeer,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reintroduction of Rangifer</td>
<td>60 (10 M, 50 F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(disappeared in 1800s)</td>
<td>March 1982: 222 animals (3.7 times increase in the population since</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reintroduction). Estimated population over last 20 years ~ 700 animals,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>following an increasing population trend.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ferguson 1985</td>
</tr>
<tr>
<td>Le Parc des Grands-Jardins/ Laurentides Wildlife Reserve (Charlevoix), QC</td>
<td>Boreal DU (woodland)</td>
<td>1969 - 1972</td>
<td>Reintroduction (1920s)</td>
<td>83 total (over 3 years, all calves)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 caribou (13 in 1966, 35 in 1967) captured in the Cote-Nord region,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>transported to a 0.5 ha enclosure in Grands-Jardins National Park initially,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>later to a 2.1 ha enclosure in Laurentides Wildlife Reserve. 7 of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 caribou died from myopathy soon after release. Remaining caribou held in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>captivity for 3 years, adapted well and successfully bred to grow the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>population to 102 animals (adults and calves) by Summer 1969. 83 caribou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bore in captivity released into wild. Original 48 caribou never released</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(worried they would return to capture site). Herd remained stable at ~40 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 individuals until ~1980 (during wolf control); increased in the 1980s;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stabilized at 100 – 125 individuals in the 1990s; declined in 2000s;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stabilized at ~83 animals (2008); still highly threatened (small size,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>isolation from other herds, low recruitment). Bergerud and Mercer (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>highlighted the Charlevoix reintroduction as the only example of a successful</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>translocation of caribou into an area frequented by predators, but St-Laurent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Karns 1978 in Kinley 2010; Vandal 1984 in Bergerud and Mercer 1989 and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kinley 2010; McCollough and Connery 1990 in Kinley 2010; Sebbane et al. 2003,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008, 2011; St-Laurent and Dussault, 2012; Sepaq 2015</td>
</tr>
</tbody>
</table>
An Exploration of Translocation Tools for Boreal Caribou Conservation

Dussault (2012) warn against such a conclusion given the continuing fragility of the herd.

<table>
<thead>
<tr>
<th>Location</th>
<th>Species Description</th>
<th>Year(s)</th>
<th>Management Type</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagemeister Island, Alaska</td>
<td>Reindeer</td>
<td>1965</td>
<td>Herding</td>
<td>Present</td>
<td>Stimmelmayr and Renecker 1998</td>
</tr>
<tr>
<td>Great Cloche Island, ON</td>
<td>Reindeer</td>
<td>January 1969 (transported); released May 1969</td>
<td>Introduction</td>
<td>Extinct</td>
<td>Anderson 1971, Bergerud and Mercer 1989</td>
</tr>
<tr>
<td>Liscombe Game Sanctuary, Nova Scotia</td>
<td>Newfoundland DU (woodland)</td>
<td>April 1939</td>
<td>Reintroduction</td>
<td>Extinct</td>
<td>Tufts 1939 in Bergerud and Mercer 1989; Tufts 1939 and Bensen and Dodds 1977 in Audet and Allen 1996</td>
</tr>
<tr>
<td>Red Lake Herd, Minnesota</td>
<td>Assumed boreal (could be barren-ground)</td>
<td>1938 - 1940</td>
<td>Reinforcement</td>
<td>Extinct</td>
<td>Karns 1978 in Audet and Allen 1996; Cringan 1957 in Luensmann 2007; Bergerud and Mercer 1989</td>
</tr>
</tbody>
</table>
An Exploration of Translocation Tools for Boreal Caribou Conservation

Mackenzie River Delta, NWT: Alaska
Herding 1929 – 1935
Numbers increased to 8,346 by 1942; then fluctuated between 5,000 – 9,000; 2,800 in 1967; ~3,000 animals managed (frequently escape to join native barren-ground caribou)
Present
Scott 1972; Treude 1979; Haigh 1991; "NWT's only reindeer herd...” 2008; “Mackenzie Delta...” 2015

Baffin Island, Nunavut: Norway
Reindeer 1921
Herding 627
Due to mortalities, dispersal, and inadequate forage and care, most of the herd disappeared by 1925 and the herding project was cancelled in 1927.
Extinct
Scott 1972; Haigh 1991; Government of Nunavut 2013

Pribilof Islands (St. Paul and St. George Islands), Alaska
Reindeer 1911 + later releases from Nunivak and Umnak Islands
Herding 25
Populations severely declined (poaching, severe weather, inadequate forage), but later released boosted populations. Hundreds or reindeer present as of 2007.
Present
Hanna 1922; NOAA 2008

St. Anthony, Newfoundland: Norway
Reindeer 1908
Herding 300
Rapid increase to 1,300 animals in 1912, but then decreased to 230 by ~1920 (poor management); eventually moved to Anticosti Island
Extinct
Scott 1972; Haigh 1991

Alaska (unknown location): Siberia
Reindeer 1891-1902
Herding 1,280
Estimated 10,000 reindeer in Alaska by 1905 (managed). Population declined in 1930s to 25,000-50,000 by 1950s (poor management). Reindeer herding now found only on Seward Peninsula (~15,000 – 20,000 caribou, 20 herders).
Present

International translocations:

Falklands Islands: South Georgia
Reindeer 2001
Introduction 59 (calves)
Produced offspring in 2003; further results unknown
Present
Bell and Dieterich 2010

Godthaab area, West Greenland: Norway
Reindeer 1952
Herding unknown
Unknown
Unknown
Klein 1980

Broggerhalvoya, Svalbard: Unknown
Reindeer 1978
Reintroduction (~100 years) 15
Increased to ~200 by 1989
Presumed present
Staaland et al. 1993

Salamajarri National Park, Finland: Unknown
wild forest reindeer Dec 1981 and 1983
Unknown
Unknown (calves)
Wilt forest reindeer captured winters 1981 & 1983. Held in captivity until ~1.5 years old, then released. Released individuals successfully bred in the wild, but other outcomes are not available.
Unknown
Nieminen and Laitinen in Audet and Allen 1996

Western Greenland: Northern Norway
Domestic reindeer September 1952
Unknown 225
Reindeer brought the warble fly and nostril fly. Infected the indigenous wild Greenland caribou. Greenland caribou reduced in number.
Unknown
Rosen 1955 in Olney, Mace and Feistner 1994

South Georgia: Norway
Reindeer 1911 – 1925 (3 occasions)
Introduction Unknown
Resulted in 2 herds that today number ~ 2,600 animals and have become a nuisance
Present
Leader-Williams 1988 in Bell 2010

Appendix 2 Table References

51

Leech, H. (2015). Seasonal Habitat Selection by Resident and Translocated Caribou in Relation to Cougar Predation Risk. (Master of Science), University of Victoria, Victoria, B.C.

Society for Canadian Field-Naturalists, 121(2), 155-163.

Appendix 3: Captive-rearing (Maternal Penning)

<table>
<thead>
<tr>
<th>Targeted Herd</th>
<th>Years</th>
<th>Pen Size</th>
<th># Animals captured</th>
<th>Births</th>
<th>Deaths in captivity</th>
<th># Adult Females & Calves released</th>
<th>Calf Survival</th>
<th>Recruitment</th>
<th>Population responses</th>
<th>References</th>
</tr>
</thead>
</table>
Appendix 3 Table References

Revelstoke Caribou Rearing in the Wild (RCRW) (2015a, April 2). Findings from Year One of Maternity Penning in the Revelstoke Region.

Revelstoke Caribou Rearing in the Wild (RCRW) (2015e). Revelstoke Maternal Penning Project Year 2, Fall 2015 Update: Penned caribou have higher survival compared to wild animals. Revelstoke, BC: Revelstoke Caribou Rearing in the Wild (RCRW) Society.

Appendix 4: Lessons from Other Ungulate Recoveries

We drew upon knowledge of previous ungulate translocations detailed in case studies within the IUCN Reintroduction Specialist Group’s Global Reintroduction Perspectives books (Soorae 2008, 2010, 2011 and 2013). These projects included releases of:

- Arabian sand gazelle (*Gazella subgutturosa* ssp. *Marica*) to Uruq Bani Ma’arid PA and Mahazat as-Sayd PA, Saudi Arabia
- Arabian oryx (*Oryx leucoryx*) to Al Wusta Wildlife Reserve (formerly Arabian Oryx Sanctuary), Oman; Um Al Zomoul and Dubai Desert Conservation Reserve, United Arab Emirates (UAE); Wadi Rum PA, Jordan; Negev Desert, Israel; Mahazat as-Sayd PA and Uruq Bani Ma’arid PA, Saudi Arabia
- Hirola (*Beatragus hunteri*) to Tsavo East National Park, Kenya (reinforcement)
- Roe deer (*Capreolus capreolus*) to Ajloun Nature Reserve, Jordan
- Amur goral (*Naemorhedus caudatus*) to Wolaksan National Park, South Korea
- Apennine chamois (*Rupicapra pyrenaica ornata*) to Gran Sasso-Laga National Park, Italy
- Mountain gazelle (*Gazella gazella*) to Ibex Reserve and Uruq Bani Ma’arid PA, Saudi Arabia
- Scimitar-horned oryx (*Oryx dammah*) to Dghoumes National Park, Tunisia
- Przewalski's horse (*Equus ferus przewalskii*) to Mongolian Gobi
- Common eland (*Tragelaphus oryx*), wildebeest (*Connochaetes taurinus*), giraffe (*Giraffa camelopardalis*), sable antelope (*Hippotragus niger*), bushbuck (*Tragelaphus scriptus*) and Burchell’s zebra (*Equus quagga*) to Shangani Ranch and De Beers Ranch, Zimbabwe
- Milu (Pere David’s deer) (*Elaphurus davidianus*) to Beijing, Dafend and Shishou, China
- Lichtenstein’s hartebeest (*Alcelaphus buselaphus* ssp. *Lichtensteinii*) to Malilangwe Wildlife Reserve, Zimbabwe
- Tule elk (*Cervus elaphus nannodes*) to Point Reyes National Seashore, USA
- Elk (*Cervus elaphus*) to Ontario
- Bison (*Bison bison*) to New Mexico and Native American lands in Western USA
- Wisent (European bison) (*Bison bonasus L.*) to Europe
- Wood bison (*Bison athabascae*) to Russia
- Desert bighorn sheep (*Ovis canadensis mexicana*) to Fra Cristobal Mountains, New Mexico, USA

Many of the above projects also included long-term captive-breeding programs and/or the use of fences in recovery efforts.

As ungulates translocated within North America to areas with predators, we examined Elk (*Cervus elaphus*) reintroductions and reinforcements to Eastern North America, and Bighorn sheep (*Ovis canadensis*) reintroductions to Western U.S. in more detail. We also investigated Alpine ibex (*Capra ibex*) reintroduction and reinforcement to the Marmolada massif in Italy, Persian fallow deer (*Dama mesopotamica*) reintroductions and introductions to Iran and Israel and a predator-exclusion project for...
hirola (*Beatragus hunteri*), which were not included within the IUCN case studies. Furthermore, we drew upon relevant reviews of ungulate-specific and general translocations for overarching observations.

Though not a comprehensive review, we consider these species and associated information to adequately represent an array of different situations upon which to draw general conclusions—e.g. taxa, geographical locations, habitats, wild-born vs. captive-born individuals, founder group size and composition, captive-breeding, and fencing. We drew upon experts’ judgments of overall program success, challenges faced and major lessons learned, as detailed in the IUCN case studies, to relay information deemed most relevant to caribou recovery.

a) How ‘successful’ have ungulate translocations been overall?

All ungulate translocation programs detailed with IUCN case studies were deemed either partially successful, successful or highly successful (i.e. none were considered failures) at the time of case studies’ respective publication dates. Though this may in part represent a tendency to report on success rather than failure (Fanelli 2012) it may also reflect the overall success of long-term ungulate translocation programs.

IUCN case studies reported on the overall success of a program, which sometimes involved several releases to a given location and/or releases to multiple locations. For example, a first release of Arabian oryx to the Dubai Desert Conservation Reserve in UAE was largely unsuccessful; however, later releases were successful in establishing self-sustaining herds (Simkins 2008). Similarly, the first release of Apennine chamois to the Gran Sasso-Laga National Park in Italy was unsuccessful (only 1 animal survived), but subsequent releases established stable, viable herds (Lovari et al. 2010).

For those examples examined that were not included within IUCN case studies:

- A review of elk reintroductions to Eastern North America found that about 40% of documented reintroductions failed within 5 – 94 years (most occurred in the first half of the 20th century) (Popp et al. 2014).
- Of 100 bighorn sheep reintroductions within Colorado, Montana, North Dakota, South Dakota, Wyoming and Utah between 1923 and 1997, 30 were considered unsuccessful (13 extirpated and 17 remnant populations, i.e. < 30 animals as of 1997 with a low chance of recovery), 29 moderately successful (30 – 99 animals) and 41 successful (≥ 100 animals) (Singer et al. 2000).
- Of 10 reintroductions and 3 introductions of Persian fallow deer to 13 sites in Iran, translocation was considered to be a success for 4 sites (i.e. 33% success rate) (Goudarzi et al. 2015).

Authors of nearly every IUCN case study emphasized the importance of appropriate planning prior to any translocation, as well as post-release monitoring and adaptive management following release. The need for proper documentation throughout the translocation process and the importance of long-term financial commitment and support was also often relayed.

Hoffman et al. (2015) recently reviewed all 235 even- and odd-toed ungulates (Cetartiodactyla and Perissodactyla, respectively) listed as ‘data-sufficient’ on the 2008 IUCN Red List and compared their 2008 reported conservation status to their estimated status under scenarios wherein no conservation
efforts were conducted. Overall, the authors estimated that the decline in the conservation status of reviewed ungulates would have been 8 times worse had conservation actions not been implemented (based on a ‘best case’ scenario) (Hoffman et al. 2015). Of 178 species that were affected by direct threats (mostly hunting), 30 benefited from direct targeted conservation action, such as translocations, anti-poaching patrols and species-specific hunting restrictions (Hoffman et al. 2015). In comparison, 148 benefited from indirect conservation, such as habitat protection. Of at least 25 species that were affected by indirect threats (mostly habitat loss resulting from agriculture or logging), direct action was taken for 3 species (Hoffman et al. 2015). Species whose conservation status was projected to have been lower than its 2008 status were it not for reintroduction efforts included the Arabian oryx, Przewalski’s horse, Persian fallow deer, white rhinoceros (Ceratotherium simum), and Iberian wild goat (Capra pyrenaica).

b) Have populations typically grown following translocations?

Many reintroduced populations examined within the IUCN case studies exhibited population increases (e.g. Spalton et al. 1999, Wacher and Robinson 2008, Lee et al. 2010, Lovari et al. 2010, Islam et al. 2011c, Al Jahdhami et al. 2011, Wronski et al. 2011, Swanepoel and Dunham 2013, Gogan et al. 2013), especially if environmental conditions at the release site were favorable and the population was protected from predators and/or poaching pressures.

However, the overall growth of released populations was reported over varying time periods and multiple subsequent releases often occurred. Furthermore, initial increases were sometimes followed by declines due to a number of factors (often in tandem), including hunting (Spalton 1993, Al Jahdhami et al. 2011, Wronski et al. 2011), weather (and associated starvation) (Islam et al. 2010a, Kaczensky et al. 2011), and domestic livestock (Wronski et al. 2011). These declines were particularly severe when populations were restricted to a defined area (usually by fencing) and severe weather put added pressure on the population (Islam et al. 2010a, Clegg et al. 2013).

Not all released populations exhibited positive growth. For example, 2 of 3 reintroduced populations of Arabian oryx to Israel were reported to have exhibited negative growth due to low reproductive success (Saltz 2008). A reintroduced population of Lichtenstein’s hartebeest in Malilangwe Wildlife Reserve, Zimbabwe also declined following the second of two releases, apparently due to unsustainable predation levels (Clegg et al. 2013).

For those examples examined that were not included within IUCN case studies:

- Of the 70 ‘successful’ and ‘moderately successful’ reintroductions of bighorn sheep to Western US, 11 steadily increased following initial translocation, 11 increased at first but then declined, 11 increased, declined and then recovered, and 1 fluctuated largely over time (Singer et al. 2000).
- The exponential rate of increase \(r \) of reintroduced elk populations in Eastern North America ranged from -0.05 to 0.13 (i.e. \(\lambda = 0.95 – 1.13 \)) (Popp et al. 2014).
- Two of 13 populations of Persian fallow deer reintroduced or introduced to Iran have gone extinct (Goudrazi et al. 2015). Two extant populations are declining (growth rate, \(r \), -0.11 and -0.26) and growth rates for the remaining 9 extant populations range between 0.06 and 0.32 (≥0.2 considered
good, 0.1 – 0.2 moderate and ≤ 0.1 poor, negative value indicates declining population) (Goudrazi et al. 2015). Between 1996 and 2001 a total of 124 Persian fallow deer (58 females, 66 males) were released to Nahal Kziv Nature Reserve in Israel over 10 events (Bar-David et al. 2005). The wild population continued to expand to more than 250 animals by 2014 (D. Saltz pers. comm. 2014 in IUCN 2015).

c) What time of year were animals typically released?
The timing of releases was determined according to the species’ biology, environmental conditions and the most important limiting factors to populations (Stanley-Price 1986, Kiwan et al. 2008, Wacher and Robinson 2008, Shah et al. 2013).

d) Have translocation programs released animals over one or multiple events?
The majority of translocation projects examined released animals to the same release site over 2 or more events spanning multiple years (e.g. Wacher and Robinson 2008, Saltz 2008, Islam et al. 2010b, Wronski et al. 2011). Lovari et al. (2010) recommended that consecutive Apennine chamois releases should be concentrated in time to minimize dispersal.

Using optimization models, Tenhumberg et al. (2004) suggested that the optimal release strategy is to release small groups of animals over multiple years. Advantages of doing so are: (1) the success of the entire translocation program does not rest on the success of one release, (2) management can be adjusted between releases as needed, and (3) especially if individuals are sourced from a captive population, the source population may continue to grow at a higher rate (Tenhumberg et al. 2004).

e) Have translocation programs released animals at one or multiple release sites?
Many species examined were released to numerous sites. Doing so helps to reduce the risk of any one population succumbing to stochastic events. Animals were released to entirely different release areas (including different countries, e.g. Arabian oryx reintroduction to Jordan, Israel, UAE, Saudi Arabia) and/or a number of different release sites within the same general area (e.g. Arabian oryx released to 3 sites in the Negev Desert, Israel, Saltz 2008; mountain gazelle released to 4 sites within the Ibex Reserve, Saudi Arabia, Wronski et al. 2011). Multiple release sites may be managed as a meta-population to promote genetic diversity (e.g. scimitar-horned oryx, Gilbert and Woodfine 2008; wisent, Beloussova et al. 2005).

f) How has founder group size and composition affected previous ungulate translocations?
In a review of reintroductions of Artiodactyla (even-toed ungulates), Komers and Curman (2000) found that all releases ≥ 20 animals grew, whereas trends of those that included < 20 animals were more variable. Population growth in relation to founder group begins to level off after 20 animals, which suggests that founder groups much larger than 20 animals do not increase the probability of a translocation’s success (Griffith et al. 1989, Wolf et al. 1996, Komers and Curman 2000). However, larger groups may be necessary in some situations/for some species. For example, outcomes of bighorn sheep translocations suggest larger founder groups (~40 animals) may be required (Singer et al. 2000).
Sex and age composition of founder groups also affects translocation outcomes, with older mature animals likely to positively influence population growth (Komers and Curman 2000, Bar-David et al. 2005).

Trade-off decisions have had to be made between population growth and other factors that may affect translocation success. For example, young scimitar-horned oryx (5 – 7 months) were chosen for release to Bou Hedma National Park, Tunisia, despite the fact that doing so resulted in initially low breeding rates (Gordon and Gill 1993). This decision was made because managers felt that young animals would form a ‘more integrated social unit’ than adults, would better adapt to local conditions, and would involve lower transport costs (Gordon and Gill 1993).

g) Are soft or hard approaches typically adopted? Have they been observed to influence outcomes?

Most ungulate translocations examined adopted soft-release approaches (e.g. Kiwan et al. 2008, Wacher and Robinson 2008). Whether a hard or soft release was implemented depended upon the particular species and situation in question. Researchers/managers of antelope reintroductions to arid environments in Africa and Arabia strongly recommended and adopted soft-release approaches (e.g. Gordon and Gill 1993, Simkins 2008, Wacher and Robinson 2008). Relatedly, nearly all reintroductions that used captive-bred animals followed soft approaches—upon arriving at a release site, animals were held within enclosures of varying sizes for periods of days to many months depending upon the project.

This ‘acclimation’ period was adopted to allow animals to recover from any stress experienced during transport and to adapt to their new environment. In some cases, it was also used to encourage the formation of stable social structures (Gordon and Gill 1993) and to promote bonding between breeding pairs (Woodfine et al. 2011) prior to release.

Researchers have observed or hypothesized benefits of using a soft-release approach, including more favorable social coherence and reproductive success (Wacher and Robinson 2008), reduction of potential negative effects on vegetation (Simkins 2008), prevention of dispersal from the release area (Ryckman et al. 2010), and potentially lower initial predation-caused mortality (Kock et al. 2010).

However, in a general review of translocations (i.e. not just ungulates), Griffith et al. (1989) found no consistent relationship between program success and whether a hard versus soft release approach was used. Hard releases were found to be just as effective as soft releases in reintroductions of large antelopes to Debshan Ranches in Zimbabwe (Swanpoel and Dunham 2013). Similarly, using a soft-release approach was considered unnecessary or even unfavorable for Apennine chamois reintroduction in Italy (Lovari et al. 2010).

h) What are some observations that have been made when using wild-born vs. captive-born individuals?

Most ungulate reintroductions examined within IUCN case studies used captive-born animals and as mentioned, these programs have experienced varying degrees of success. In a general review of translocations (i.e. not just ungulates), Griffith et al. (1989) found that translocations that used
exclusively wild-caught animals were more likely to be successful than those that used exclusively captive-reared animals.

However, it appears that no definitive conclusions regarding potential outcomes of using wild-born vs. captive-born ungulates can be made across species and programs. Some programs found that the released animals adapted well to the wild (Perelberg et al. 2003), including zoo-bred animals (Gilbert and Woodfine 2008), while others suggested captive-born animals do more poorly upon release than wild-born animals (Lovari et al. 2010, Shah et al. 2013).

‘Captivity’ can imply a range of different environments – from zoos to pens within the species’ natural environment—and animals kept in captivity are managed to varying degrees. Therefore, the conditions that ‘captive-born’ individuals experience prior to being released into the wild may affect program outcomes. For example, mixed releases of Persian fallow deer to Soreq Nature Reserve (and surrounding areas) indicated that animals from the Jerusalem Biblical Zoo exhibited maladaptive behaviors that likely increased their mortality risk as compared to animals from Hai-Bar Carmel Reserve (Saltz et al. 2011).

i) Have released animals adapted well to their new conditions?

Animals in many translocations appeared to have adapted well to their new environments and showed appropriate social behaviors and group structure (e.g. scimitar-horned oryx in Tunisia, Gilbert and Woodfine 2008; Persian fallow deer to Israel, Perelberg et al. 2003).

However, translocated animals may need time to fully adapt to new conditions at their release site (Scillitani et al. 2013). For example, released alpine ibex in Italy required up to 3 years to acquire knowledge on location of available forage and socially integrate with resident animals (Scillitani et al. 2012). Survival of young may be low during the transition period when translocated animals adjust life-history characteristics to release areas, which may in turn jeopardize reintroduction success (Whiting et al. 2011). For example, female bighorn sheep translocated to Utah adapted the timing and synchrony of parturition over time to meet environmental conditions at the release site (Whiting et al. 2011); however, survival of females’ young to their first winter was lower during years when parturition had not yet been adjusted (Whiting et al. 2011).

Animals may have a particularly difficult time adapting if environmental conditions at the release site are much different from those at the source site; Al Zaidaneen and Al Hasaseen (2008) suggested that translocated Arabian oryx from Shaumari reserve had difficulty adapting to their new environment in the Wadi Rum Protected Area, Jordan due to differences in climate, vegetation and topography (Al Zaidaneen and Al Hasaseen 2008).

Authors of previous projects have proposed that conspecifics can help released animals to adapt more quickly (Dolev et al. 2002, Saltz 2008). For example, Persian fallow deer released in Israel appeared to adjust to wild conditions more quickly when conspecifics were already present, as indicated by quicker establishment of home ranges by animals from later releases (though this finding was not significant) (Dolev et al. 2002). Arabian oryx that had been reintroduced to Israel appeared to help newly released oryx establish ranges and learn the landscape (Saltz 2008). However, repeated releases also appeared to temporarily destabilize social groups (Saltz 2008).
j) Has dispersal been a problem in ungulate translocations? What affects dispersal?

Dispersal from the release area is common, though dispersal was constrained in many translocations examined by fencing. The probability that animals disperse from the release area and the distance to which they do so are affected by a number of factors, including:

- **Environmental conditions at the release site and surrounding areas** (Simkins 2008, Ryckman et al. 2010): For example, elk released to the 4 sites showed differences in dispersal, which may have been influenced by differences in habitat characteristics (forage availability, human population densities, climate) between the sites and/or the presence of conspecifics (Ryckman et al. 2010). Furthermore, environmental conditions, especially vegetation, directly affected dispersal patterns of Arabian oryx reintroduction to Dubai, UAE (Simkins 2008). Habitat conditions were also found to be a key feature driving dispersal in mountain gazelle reintroduction to the western Empty Quarter in Saudi Arabia (Islam et al. 2011c).

- **Soft- versus hard-release approach** (Gordon and Gill 1993, Ryckman et al. 2010): For example, elk that were held for moderate periods dispersed significantly lower distances than those held for shorter periods (Ryckman et al. 2010). However, holding period could not completely explain variation in dispersal distances and results suggest there may be a threshold above which holding period no longer affected dispersal (Ryckman et al. 2010).

- **Time since release** (Scillitani et al. 2012, 2013): For example, adult alpine ibex males released in Italy initially explored their surroundings to find preferred resources, but eventually reduced their home ranges to sizes similar to resident animals (Scillitani et al. 2012).

- **Sex and age** (the effects of which may differ between species) (Ryckman et al. 2010, Lovari et al. 2010, Scillitani et al. 2012): For example, elk calves generally stayed closer to the release site and dispersed in a different direction than adults (Ryckman et al. 2010). Adult male elk dispersed significantly farther than calves (of either sex), but there was no difference in the mean dispersal distance between adult males and females (Ryckman et al. 2010). In contrast, behaviors of individual alpine ibex males translocated to Italy were highly variable, but there was no relationship between spatial movements and age (though all were subadults or adults; Scillitani et al. 2012). In apennine chamois reintroductions to Italy, sub-adult males were most likely to disperse, but they were less likely to do so if several mature females were present at the release site (Lovari et al. 2010).

k) How has habitat quality affected translocation success?

Many authors of the IUCN case studies stress the importance of ensuring suitable habitat is available within the release area, and if not, improving habitat before release. Otherwise, poor habitat quality can have dire consequences for a released population (Shah et al. 2013). In a general review, Griffith et al. (1989) found that translocations more likely to be successful if habitat quality at the release site was high, though there was no consistent relationship between success and habitat improvement.

If suitable habitat was not present, supplementary feeding has been used to promote growth in the reintroduced herd and to protect the ecosystem from further grazing pressure (Simkins 2008, Islam et al. 2010b, Zhigang 2013).
Environmental conditions, especially vegetation, can also affect animals’ behavior and dispersal patterns after release (Simkins 2008, Ryckman et al. 2010). For example, Arabian oryx reintroduced to the UAE were more likely to use feed stations during the summer when natural forage was low and dispersed more over the longer-term as environmental conditions improved within the Dubai Desert Conservation Reserve (Simkins 2008).

1) How does the presence of predators affect ungulate translocations?
Previous translocations of ungulates have noted high initial mortality of released animals in areas with abundant predators, which may ultimately risk program success. For example:

- Wolf mortality accounted for 25% of elk mortalities (wild-sourced) up to 6 years after they were released to Ontario and bear predation on neonates was also noted as a potential factor limiting recruitment (Rosatte et al. 2007). Initial mortality was especially high at one of the four release areas due in large part to predation (Rosatte 2013).

- A reintroduced population of Lichtenstein’s hartebeest (captive-bred) in Malilangwe Wildlife Reserve is predicted to go extinct without further releases due to unsustainable levels of predation of adult females by lions and other large carnivores (Clegg et al. 2013).

- Six of seven radio-collared desert bighorn sheep released to the Fra Cristobal Mountains (from a fenced refuge) in 1997 were killed by cougars within 18 months of their release (Phillips 2013).

- High populations of lions, leopards, cheetahs, spotted hyenas and African wild dogs are thought to have killed hirola that were still adapting to their new environment during early stages of reinforcement in Tsavo East National Park in Kenya (Kock et al. 2010).

In a general review, Griffith et al. (1989) found that translocations more likely to be successful if no or few predators are present.

m) How does the presence of other (non-predator) species affect ungulate translocations?
Interactions with other (non-predator) animals, including livestock, has been found to affect released animals and ultimate outcomes of translocation programs (Gordon and Gill 1993, Singer et al. 2000, Wronski et al. 2011). Potential negative effects may be due to aggressive behaviors (Gordon and Gill 1993), competition for resources (Wronski et al. 2011) and disease (Singer et al. 2000).

n) What health-related problems have occurred in ungulate translocation programs?
Disease has threatened captive and free-ranging populations in previous translocation programs (e.g. Islam et al. 2011, Scillitani et al. 2011, Goudarzi et al. 2015). Nutritional deficiency was found to cause mortality in translocated tule elk in California, which threatened the reintroduction’s initial success (Gogan et al. 2013). Disease risks have also posed challenges in obtaining suitable source animals for releases and/or using reintroduced populations as future source herds themselves (Gogan et al. 2013, Rosatte 2013).
What issues regarding human dimensions are commonly encountered during ungulate translocation programs?

Unexpected social challenges have threatened the success of previous translocation programs and numerous authors of IUCN case studies stress the importance of conducting social outreach throughout a translocation program. For example:

- Reintroductions or reinforcements of animals have impacted local people, who can retaliate if they are not included in the process and do not understand the program’s objectives and importance (Rosatte et al. 2007, Saltz et al. 2011, Wronski et al. 2011).

- Even unintentional illegal hunting due to misidentification of animals can undermine translocation efforts if the hunters are not educated on ungulate identification before animals are released (Rosatte et al. 2007).

- Management of translocated species has needed to be balanced with tourist expectations (e.g. Lichtenstein’s hartebeest reintroduction to the Malilangwe Wildlife Reserve, Zimbabwe, Clegg et al. 2013).

- Social issues have arisen between members on the same management team, which has hindered overall progress (Phillips 2013).

Political challenges have also been noted, and are particularly tricky when reintroduction efforts occur in multiple countries or jurisdictions (Perzanowski and Olech 2013). However, some political pressure can increase a program’s public profile and ultimately expand public awareness (Kock et al. 2010).

What role have fences played in translocations?

Fencing has been used in translocation programs to protect animals from threats to their existence during the captive-breeding, release and post-release stages of translocation. Many releases examined were to fenced areas, especially those of antelopes in arid habitats of Africa and the Middle East (e.g. Gordon 1993, Gilbert and Woodfine 2008, Simkins 2008, Islam et al. 2010a, 2011a,b, Clegg et al. 2013, Shah et al. 2013). These releases were usually to Protected Areas or Nature Reserves that were several hundred to several thousand km² large (though some were as small as 12 km², Eid and Ananbeh 2010, and some as large as nearly 14,000 km², Kock et al. 2010).

Most fences were intended to protect animals from poaching, which was a major threat to many antelope species in arid landscapes. These populations were held in relatively large fenced areas within their natural habitat, often with minimal or no support over long period of time.

Fencing was also used for soft-releases and for programs that captive bred animals in fences within their natural range. In contrast to releases of animals to large-scale long-term fenced areas, these techniques involved a high degree of support and management of the fenced population, and commonly fenced smaller areas.
q) **Has (predator-proof) fencing been effective in protecting animals from predators and stimulating population growth?**

Fencing appears to have been relatively effective in protecting enclosed ungulates from predation and stimulating growth in the protected populations; although occasional predation events have occurred when predators penetrate the fencing.

- Lichtenstein’s hartebeest kept within two 500 ha enclosures (as breeding nuclei) in Zimbabwe rapidly increased (once founder numbers were high enough) (Clegg et al. 2013). However, unsustainable predation rates of adult females by lions and other carnivores threaten the free-ranging population, which is declining (Clegg et al. 2013).

- Seven roan antelope were brought into a 302 ha predator-proof enclosure in 1994 to protect them from unsustainable predation by lions (ultimately driven by habitat change that facilitated influxes of alternate prey to antelope habitat) (Harrington et al. 1999, Grant et al. 2002). The fenced population expanded to 39 animals by May 2001, in contrast to the free-ranging population, which failed to recover despite habitat management (Grant et al. 2002).

- In 2012, 48 hirola were moved to a 25 km² predator-proof enclosure within their historic range in Kenya (Ali unpublished work 2016). The enclosure had relatively high range quality and was also free of any livestock (Ali unpublished work 2016). The fence has been effective in keeping out all carnivores (lions, cheetahs, African wild dogs) except leopards (see part ‘s’ below, Ali unpublished work 2016). The enclosed hirola population nearly doubled in three years, increasing to 86 animals by 2015 ($\lambda > 1.0$); this is in contrast with hirola declines ($\lambda < 1.0$) within two unprotected areas, one of which also had high range quality (Ali unpublished work 2016). The hirola predator-proof sanctuary represents one strategy adopted within the Hirola Recovery Plan, which aims to address causes of hirola population decline and to improve relations with local communities (Ali unpublished work 2016).

r) **What issues have been encountered when ungulate populations are held within fences?**

- **Fencing restricted animals’ ability to move in response to environmental conditions, which led to mass die-offs in some cases.**
 - A reintroduced population of Arabian oryx in Mahazat as-Sayd Protected Area, Saudi Arabia (2,244 km² fenced area) experienced mass die-offs during the summer months of years with little rainfall (Islam et al. 2010a). Fencing surrounding the reserve appeared to restrict the oryx’s natural long-distance movements in response to rainfall and subsequent forage availability (Islam et al. 2010a).
 - Fencing around Mahazat as-Sayd Protected Area also likely restricted movement of reintroduced sand gazelles, which typically move long distances in response to stressful conditions and forage availability (Islam et al. 2011a).

- **Inter- and intra-antagonistic interactions were noted within fenced populations.**
 - Scimitar-horned oryx reintroduced to a 2,400 ha fenced area within Bou Hedma National Park in Tunisia regularly fought with Addax that were also introduced to the Park, which had potentially severe consequences on the Addax population (Gordon and Gill 1993). Under natural conditions, the two species remain largely separated across the landscape and rarely interact
(Gordon and Gill 1993). Therefore, restriction within the fenced are likely increased their interactions and subsequent fighting (Gordon and Gill 1993).

- Adult male Lichtenstein's hartebeest were aggressive and had to be removed from the enclosure to prevent fighting with subadult bulls (>1 year old) (Clegg et al. 2013).
- Aggression between hirola males held within a 25 km² fence has caused the death of at least two males (Ali unpublished work 2016).

Fenced populations have needed to be managed for carrying capacity.
- A reintroduced population of Arabian oryx to Mahazat as-Sayd Protection Area in Saudi Arabia (2,444 km² fenced area) increased from 9 in 1988 to 613 in 2006, but declined sharply thereafter to 324 animals in 2008 (Islam et al. 2010b). Managers decided to remove oryx (and sand gazelle) from the area to prevent additional mortalities resulting from the lack of vegetation (Islam et al. 2010b).
- It is acknowledged that as a fenced population, reintroduced Arabian oryx to the Dubai Desert Conservation Reserve will need to be managed according to an established carrying capacity (Simkins 2008).
- The rapid expansion of a hirola population held within a 25km² enclosure (from 48 to 86 animals total) necessitated the expansion of the enclosed area (Ali unpublished work 2016).

Predators that breached the fence posed risks for animals and/or humans.
- Lions and leopards occasionally penetrated a fence surrounding a breeding nucleus of Lichtenstein’s hartebeest in Zimbabwe, and killed both juvenile and adult hartebeest (Clegg et al. 2013). While trying to remove a lion from the enclosure, a wildlife manager was mauled (Clegg et al. 2013).
- A predator-proof fence constructed to protect hirola has not been completely effective against leopards, which have occasionally jumped over the fence and killed hirola; however, this is not considered to be a major issue overall (Ali unpublished work 2016).

Diseases have broken out in fenced populations, which can be especially catastrophic if all captive animals are kept within one enclosure (see health section above). But note: Other cases have had no problem with disease to date (e.g. hirola predator-proof fencing, Ali unpublished work 2016).

Predators may learn to use fences to their advantage when hunting, putting additional pressure on prey species (VanDyk and Slotow 2003):
- Wild dogs (*Lycaon pictus*) that were reintroduced to a 500km² fenced area in South Africa chased prey to fence lines and killed them while the prey was stunned by the electrified fence or confused (VanDyk and Slotow 2003). Doing so allowed them to catch larger prey along the fence line than they were able to away from the fence (VanDyk and Slotow 2003). Though in this case the wild dogs were held within the fence, predators outside the fence could presumably learn similar habits.

Social and financial issues have posed challenges to fencing programs.
- Locals losing grazing lands/rights as a result of the fence, political unrest along the Kenya-Somalia border, and inadequate funding and support from the international community have all been major challenges in hirola conservation (Ali unpublished work 2016).

Fencing may more negatively impact species with demanding habitat requirements. For example, reintroductions of dorcas gazelles to fenced areas has been largely successful, as compared to dama gazelles, which have done relatively poorly (Stanley-Price unpublished work). This contrast highlights
potential challenges in reintroducing a social species with relatively more demanding habitat requirements (dama gazelle) (Stanley-Price unpublished work).

Appendix 3 References

